This Thesis deals with modelling and control of a full hybrid non-plugin electric bicycle endowed with Human-Machine Interface (HMI). The main goals are: • reduction of cycling effort; • independence from the grid; • guarantee to similar appearance and weight with respect to traditional bicycles; • management of the HMI, that is, two buttons installed on the handlebars which grant the cyclist the chance to express boost and braking requests. This Research Work proposes a two-level control structure. One aims at the management of user’s requests coming from the HMI: besides being the main power source, the cyclist is also provided with the ability to actively interact with the bicycle by providing on-demand assistance requests, fact that carries along the well-known human-in-the-loop control problems. On top of that, the second level of control operates in order to guarantee that the battery is never depleted nor overcharged by affecting how cyclist’s requests are handled. The purposes of human fatigue reduction and independence from the grid are concurrent: the developed control strategies manage the delicate trade-off of providing the cyclist with a pleasant driving experience and achieving a proper energy management. Despite the many advantages hybrid electric bicycles provide, literature points out that their diffusion is constrained by high initial costs and weight. During the control algorithms planning phase, care has been taken to keep power and energy consumption limited, in view of an eventual downsizing of motor and battery pack, so that a reduction of bulk and costs might ultimately be carried out with the ambition to reach modern hub dynamos dimension and outward aspect.
La presente Tesi studia la modellistica e il controllo di una bicicletta elettrica ibrido-parallelo energeticamente indipendente e dotata di interfaccia utente. Gli scopi del Lavoro sono: • ridurre lo sforzo che il ciclista mette nella pedalata; • rendere la bicicletta energeticamente indipendente; • garantire che essa sia il più possibile simile alle biciclette tradizionali in termini di peso e di sembianze; • gestire la HMI, costituita da due bottoni montati sul manubrio, tramite cui il ciclista può richiedere assistenza o frenata alla bici. La Tesi propone un controllo strutturato a due livelli. Il primo si occupa della gestione delle richieste dell’utente: il ciclista, oltre a rappresentare la primaria fonte di potenza di un veicolo ibrido parallelo, ha la possibilità di interagire direttamente con la bicicletta tramite i suddetti bottoni, ossia tramite istanze su richiesta. La forte presenza dell’uomo all’interno dell’anello di controllo porta con sé le ben note problematiche human-in-the-loop. Il secondo livello di controllo invece è atto a garantire che durante l’uso la batteria non venga mai né scaricata né caricata eccessivamente: a tale scopo, la logica di controllo regola la gestione delle richieste, favorendone alcune e penalizzandone altre. Ridurre lo sforzo del ciclista e insieme rendere la bicicletta energeticamente indipendente sono obiettivi concorrenti, il cui compromesso è gestito dalle logiche proposte. Infatti se da un lato l’esperienza utente è da garantirsi – vista anche la diffidenza che tendenzialmente è riservata alla tipologia di veicoli trattata – dall’altro un’attenta gestione dei flussi energetici è necessaria in ottica di mantenimento di carica. In letteratura, assieme ai vantaggi che il loro utilizzo porta, vengono evidenziate le caratteristiche che ad oggi limitano ancora la diffusione delle biciclette elettriche, ossia elevati costi iniziali e peso. La Tesi si propone perciò di monitorare i consumi di potenza ed energia in fase di sintesi delle logiche di controllo, cosicché un eventuale sottodimensionamento di motore e pacco batterie possa essere effettuato, aspirando a dimensioni e apparenza simili alle moderne hub dynamo.
Design and control of a smart dynamo for bicycles
ODORIZZI, GIANMARCO;LABANCA, GIULIA
2016/2017
Abstract
This Thesis deals with modelling and control of a full hybrid non-plugin electric bicycle endowed with Human-Machine Interface (HMI). The main goals are: • reduction of cycling effort; • independence from the grid; • guarantee to similar appearance and weight with respect to traditional bicycles; • management of the HMI, that is, two buttons installed on the handlebars which grant the cyclist the chance to express boost and braking requests. This Research Work proposes a two-level control structure. One aims at the management of user’s requests coming from the HMI: besides being the main power source, the cyclist is also provided with the ability to actively interact with the bicycle by providing on-demand assistance requests, fact that carries along the well-known human-in-the-loop control problems. On top of that, the second level of control operates in order to guarantee that the battery is never depleted nor overcharged by affecting how cyclist’s requests are handled. The purposes of human fatigue reduction and independence from the grid are concurrent: the developed control strategies manage the delicate trade-off of providing the cyclist with a pleasant driving experience and achieving a proper energy management. Despite the many advantages hybrid electric bicycles provide, literature points out that their diffusion is constrained by high initial costs and weight. During the control algorithms planning phase, care has been taken to keep power and energy consumption limited, in view of an eventual downsizing of motor and battery pack, so that a reduction of bulk and costs might ultimately be carried out with the ambition to reach modern hub dynamos dimension and outward aspect.File | Dimensione | Formato | |
---|---|---|---|
2017_07_Labanca_Odorizzi.pdf
non accessibile
Descrizione: Master Thesis
Dimensione
11.06 MB
Formato
Adobe PDF
|
11.06 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/135026