The work here presented is the result of a master thesis activity that I carried out during this academic year at the the Department of Electronics, Information and Bioengineering (DEIB) at the Polytechnic University of Milan. The aim of my thesis activity has been the development of the ARDESIA project. ARDESIA (ARray of DEtectors for Synchrotron radIation Applications) is a Silicon Drift Detectors (SDD)-based, multichannel X-ray detector, optimized for synchrotron radiation fluorescence X-ray spectroscopy applications with low noise, high count rate and high energy resolution soft X-ray detector capabilities. The ARDESIA detection module is based on a matrix of 2x2 SDDs (Silicon Drift Detectors) whose area is 12x12 mm^2. This choice is essentially justified by the excellent noise properties of such detector which nowadays has established itself as the state-of-the-art for low noise (high resolution) and high count rate X-ray detection in the typical range 0.2 to 30 keV. Main applications for which ARDESIA is designed are X-ray fluorescence (XRF) and X-ray absorption fine structure (XAFS) spectroscopy techniques. XAFS uses X-rays to probe the physical and chemical structure of matter at an atomic scale. XAFS is element-specific, hence X-rays are chosen to be at and above the binding energy of a particular core electronic level of a particular atomic species. The ARDESIA experiment will use the synchrotron light emission as main light source. XAFS measurements will be performed in fluorescence mode at the section LNF DXR1 beam line but also at higher energies at the LISA Italian beam line at the European Synchrotron Radiation Facility (Grenoble, France). My work was focused on the development of the ARDESIA spectrometer. In particular I contributed to the thermal validation of the instrument by the development of detailed thermal models and thermal simulations based on finite element method procedure. I realized several kind of electronic boards needed both for the thermal management of the system and for the electronic acquisition of spectroscopic signals. I designed and realized several mechanical parts that composed the instrument and finally I took part on the experimental characterization of the employed spectroscopic modules. The dissertation is organized as follows: First chapter starts with a brief introduction on the main techniques nowadays employed to perform X-rays spectroscopic analysis with particular emphasis to the XAFS technique. Then ARDESIA project specifications are introduced and discussed. Finally an introductory overview on the whole instrument and its related main aspects is presented. Second chapter describes in details every part of the instrument. First section is dedicated to the description of the main elements that are comprised in the spectroscopic module employed, such as the detector and the preamplifier of choice. This section also describes in details the followed experimental procedure to characterize a charge sharing phenomenon arisen during spectroscopic measurements. Second section presents the specifically designed electronic circuits that compose the readout chain of the spectroscopic signals. Finally, the last part of the chapter is dedicated to a detailed description of the whole instrument assembly. Third chapter aims to present a detailed characterization of the thermal properties of the instrument. First part of the chapter is dedicated to a briefly introduction on the main physical laws that govern the thermal behavior of the system. Then the derivation of an analytical model of generic thermo electric cooler module, that has to be employed for thermal simulations, is presented. A dedicated finite element method procedure is detailed analyzed and employed to perform time-space dependent thermal simulations of the instrument. The results of such simulations are then compared with experimental values. Last part of the chapter is dedicated to the description of the specifically designed boards employed to perform the thermal control of the system. Fourth chapter concludes the dissertation with a report on the experimental characterization of the instrument at the INFN National Laboratory of Frascati (LNF). The chapter describes the several experiments effectuated to validate the ARDESIA instrument.
Il lavoro qui presentato è il risultato dell’ attività di tesi magistrale che ho portato avanti durante questo anno accademico al Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB) al Politecnico di Milano. Lo scopo del mio lavoro di tesi è stato lo sviluppo del progetto ARDESIA. ARDESIA (matrice di rivelatori per applicazioni a luce di sincrotrone) è un rivelatore multicanale di raggi X basato su rivelatori a deriva in Silicio (SDD) e ottimizzato per applicazioni di spettroscopia a luce di sincrotrone con basso rumore, elevato tasso di conteggi ed alta risoluzione energetica. Il modulo di rivelazione di ARDESIA è basato su una matrice di 2x2 rivelatori la cui area è 12x12mm^2. Questa scelta è essenzialmente giustificata dalle eccellenti proprietà di rumore dei suddetti rivelatori che al giorno d’oggi rappresentano lo stato dell’arte nel settore. ARDESIA è principalmente progettato per applicazioni di spettroscopia XRF (X-ray fluorescence) e spettroscopia di assorbimento XAFS (X-ray absorption fine structure). La spettroscopia XAFS utilizza i raggi X per sondare la struttura chimica e fisica della materia su scala atomica. Per poter effettuare tale misura è richiesta una sorgente di raggi X ad alta brillanza su una larga banda energetica, ovvero una sorgente di luce di sincrotrone. Le misure XAFS verranno effettuate alla linea DXR1 dei Laboratori Nazionali di Frascati (LNF) dell’ Istituto Nazionale di Fisica Nucleare (INFN) e per energie più alte alla Linea Italiana per la Spettroscopia d’Assorbimento X (LISA) all'European Synchrotron Radiation Facility (ESRF). Il mio lavoro si è concentrato sullo sviluppo dello spettrometro ARDESIA. In particolare ho contribuito alla validazione termica dello strumento attraverso lo sviluppo di dettagliati modelli e simulazioni termiche basate sul metodo agli elementi finiti (FEM). Ho realizzato diverse schede elettroniche necessarie sia alla gestione termica dello strumento che all'acquisizione dei segnali spettroscopici. Ho inoltre progettato diverse parti meccaniche che compongono lo strumento attraverso l’utilizzo di appositi strumenti CAD. Infine ho preso parte alla caratterizzazione spettroscopica dei moduli di rivelazione impiegati. L’elaborato è organizzato come segue: Il primo capitolo inizia con una breve introduzione sulle tecniche al giorno d’oggi più utilizzate per effettuare analisi spettroscopiche a raggi X dando particolare enfasi alla spettroscopia XAFS. Poi vengono introdotte e discusse le specifiche di progetto di ARDESIA. Infine viene presentata una panoramica iniziale sull'intero strumento. Il secondo capitolo descrive nel dettaglio ogni parte dello strumento. La prima sezione è dedicata alla descrizione degli elementi principali che sono compresi nel modulo di rivelazione spettroscopica utilizzato, come per esempio, il rivelatore e il preamplificatore scelti. Inoltre questa sezione riporta i passaggi sperimentali seguiti per la caratterizzazione di un fenomeno di accoppiamento capacitivo riscontrato durante le misure spettroscopiche. Infine, la parte finale del capitolo è dedicata alla descrizione dettagliata dell’assemblaggio dello strumento. Il terzo capitolo è dedicato alla caratterizzazione delle proprietà termiche dello strumento. La prima parte fornisce una breve introduzione sulle principali leggi fisiche che governano il comportamento termico del sistema. Poi viene sviluppato un modello analitico di un generico modulo termoelettrico che dovrà essere impiegato nelle simulazioni termiche. Viene dettagliatamente analizzata la procedura di deduzione del modello analitico del sistema termico basata sul metodo agli elementi finiti (FEM). Tale modello viene poi utilizzato per simulazioni termiche del sistema spazio-tempo dipendenti. I risultati analitici vengono poi confrontati con i dati sperimentali. L’ultima parte del capitolo è dedicata alla descrizione delle schede elettroniche appositamente progettate per gestire il controllo termico del sistema. Il quarto capitolo conclude l’elaborato con i risultati della caratterizzazione sperimentale dello strumento condotto ai Laboratori Nazionali di Frascati (LNF) dell’ Istituto Nazionale di Fisica Nucleare (INFN). Il capitolo descrive i diversi esperimenti condotti per la validazione dello strumento ARDESIA.
A high-throughput X-ray spectrometer for synchrotron applications.
LUSSIGNOLI, FRANCESCO
2016/2017
Abstract
The work here presented is the result of a master thesis activity that I carried out during this academic year at the the Department of Electronics, Information and Bioengineering (DEIB) at the Polytechnic University of Milan. The aim of my thesis activity has been the development of the ARDESIA project. ARDESIA (ARray of DEtectors for Synchrotron radIation Applications) is a Silicon Drift Detectors (SDD)-based, multichannel X-ray detector, optimized for synchrotron radiation fluorescence X-ray spectroscopy applications with low noise, high count rate and high energy resolution soft X-ray detector capabilities. The ARDESIA detection module is based on a matrix of 2x2 SDDs (Silicon Drift Detectors) whose area is 12x12 mm^2. This choice is essentially justified by the excellent noise properties of such detector which nowadays has established itself as the state-of-the-art for low noise (high resolution) and high count rate X-ray detection in the typical range 0.2 to 30 keV. Main applications for which ARDESIA is designed are X-ray fluorescence (XRF) and X-ray absorption fine structure (XAFS) spectroscopy techniques. XAFS uses X-rays to probe the physical and chemical structure of matter at an atomic scale. XAFS is element-specific, hence X-rays are chosen to be at and above the binding energy of a particular core electronic level of a particular atomic species. The ARDESIA experiment will use the synchrotron light emission as main light source. XAFS measurements will be performed in fluorescence mode at the section LNF DXR1 beam line but also at higher energies at the LISA Italian beam line at the European Synchrotron Radiation Facility (Grenoble, France). My work was focused on the development of the ARDESIA spectrometer. In particular I contributed to the thermal validation of the instrument by the development of detailed thermal models and thermal simulations based on finite element method procedure. I realized several kind of electronic boards needed both for the thermal management of the system and for the electronic acquisition of spectroscopic signals. I designed and realized several mechanical parts that composed the instrument and finally I took part on the experimental characterization of the employed spectroscopic modules. The dissertation is organized as follows: First chapter starts with a brief introduction on the main techniques nowadays employed to perform X-rays spectroscopic analysis with particular emphasis to the XAFS technique. Then ARDESIA project specifications are introduced and discussed. Finally an introductory overview on the whole instrument and its related main aspects is presented. Second chapter describes in details every part of the instrument. First section is dedicated to the description of the main elements that are comprised in the spectroscopic module employed, such as the detector and the preamplifier of choice. This section also describes in details the followed experimental procedure to characterize a charge sharing phenomenon arisen during spectroscopic measurements. Second section presents the specifically designed electronic circuits that compose the readout chain of the spectroscopic signals. Finally, the last part of the chapter is dedicated to a detailed description of the whole instrument assembly. Third chapter aims to present a detailed characterization of the thermal properties of the instrument. First part of the chapter is dedicated to a briefly introduction on the main physical laws that govern the thermal behavior of the system. Then the derivation of an analytical model of generic thermo electric cooler module, that has to be employed for thermal simulations, is presented. A dedicated finite element method procedure is detailed analyzed and employed to perform time-space dependent thermal simulations of the instrument. The results of such simulations are then compared with experimental values. Last part of the chapter is dedicated to the description of the specifically designed boards employed to perform the thermal control of the system. Fourth chapter concludes the dissertation with a report on the experimental characterization of the instrument at the INFN National Laboratory of Frascati (LNF). The chapter describes the several experiments effectuated to validate the ARDESIA instrument.File | Dimensione | Formato | |
---|---|---|---|
Thesis_Francesco_Lussignoli.pdf
non accessibile
Descrizione: Tesi Laurea Magistrale
Dimensione
11.11 MB
Formato
Adobe PDF
|
11.11 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/135065