In recent years the awareness of the environmental risks associated with the use of ammonium perchlorate in solid propellants has led the research community to find an environmentally friendly alternative. Ammonium dinitramide (ADN) is by far the most promising choice and the present work aims at investigating the burning behavior of this oxidizer in combination with the two binders HTPB and GAP, hydroxyl-terminated polybutadiene and glycidyl azide polymer respectively. In order to highlight the differences between the two binders coupled with ADN, specular formulations were produced, loaded with a number of metal powders. The study also intends to assess the influence of mechanically activated powders on the agglomeration process, one of the major drawbacks related to the use of aluminum. With this regard, the latter fuel was combined with magnesium and two batches of activated powder were produced, employing different intensities of the treatment. The powders were comprehensively characterized in their morphology, size, reactivity. The burning rate and the flame temperatures were measured from combustion tests performed in the pressure range from 2 to 13 MPa, by using a high-speed camera and an emission spectrometer. The agglomeration phenomena were investigated in dedicated tests carried out at 0.5, 1 and 2 MPa. The results have pointed out several substantial differences in the behavior of ADN with the inert (HTPB) and the active binder (GAP). All the HTPB/ADNbased propellants exhibit a relatively high ballistic exponent (0.7 − 0.9), above the common standard adopted for civil applications. On the other hand, the GAP/ADN formulations feature a weak pressure dependence (∼ 0.3), with a superior synergy between the components, but also a high burning rate that makes them difficult to apply in civil rockets. Computed tomographies and SEM images of samples extinguished by rapid depressurization evidenced some issues concerning the coupling of ADN with HTPB, also observed in the combustion videos. A poor interaction between the ingredients is acknowledged, underlined by the fact that the oxidizer decomposes quickly and leaves the binder behind, which pyrolyzes at a later stage in the flame zone. Furthermore, such propellants featured very low flame temperatures, far below the adiabatic values. For what may concern the aggregation phenomenon, both the addition of magnesium and the activation treatment proved to be extremely effective in reducing the size of the agglomerates. The study is part of the GRAIL project, which has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 638719.
Negli ultimi anni la consapevolezza dei rischi antropici ed ambientali associati all’utilizzo del perclorato d’ammonio nei propellenti solidi ha spinto la comunità scientifica del settore a ricercare un’alternativa più sostenibile. Attualmente l’ammonio dinitramide (ADN) si presenta come la soluzione più promettente ed il presente studio si propone di esaminare alcuni aspetti riguardanti l’accoppiamento di questo ossidante con i due leganti HTPB ed GAP, rispettivamente polibudatiene idrossilato e polimero di azoturo di glicidile. Per poter evidenziare le differenze tra i due polimeri combinati all’ADN, sono state testate delle formulazioni perfettamente speculari, contenti diverse polveri metalliche. Lo studio ha infatti come ulteriore scopo quello di valutare l’effetto di polveri meccanicamente attivate sul fenomeno dell’ agglomerazione, uno dei maggiori svantaggi associati all’uso dei propellenti alluminizzati. A tale proposito si è scelto il magnesio come additivo per l’alluminio e si sono prodotte due polveri, attivate secondo intensità diverse del processo. Tali polveri sono state dettagliatamente caratterizzate in termini di morfologia, dimensione, reattività. Dalle prove di combustione effettuate da 2 a 13 MPa si sono misurati il rateo di combustione e le temperature di fiamma, rispettivamente tramite una videocamera ad alta velocità ed uno spettrometro di emmisione. Per l’agglomerazione si sono effettuati dei test dedicati a 0.5, 1 ed 2 MPa. I risultati hanno rivelato la presenza di sostanziali differenze nel comportamento dell’ADN con il binder inerte (HTPB) e quello attivo (GAP). Tutti i propellenti a base di HTPB/ADN condividono un esponente balistico relativamente alto (0.7 − 0.9), superiore agli standard tipici della propulsione solida civile. Dall’altro lato le formulazioni contententi GAP/ADN vantano una dipendenza dalla pressione molto bassa (∼ 0.3) ed un’ottima sinergia tra i componenti, ma anche un rateo di combustione non adatto per i lanciatori civili. Indagini al microscopio elettronico e tomografie computerizzate di campioni estinti tramite rapida depressurizzazione hanno evidenziato delle problematiche nell’accoppiamento tra l’ADN e l’HTPB, riscontrate anche dai video di combustione. Si ravvisa una scarsa interazione tra i componenti, sottolineata dal fatto che l’ossidante, durante la combustione, decompone rapidamente lasciandosi indietro il legante che viene pirolizzato solo successivamente nella zona di fiamma. In aggiunta, si sono misurate delle temperature di fiamma relativamente basse, molto inferiori ai valori adiabatici. Per quanto riguarda il fenomeno di aggregazione, sia l’aggiunta del magnesio sia il trattamento di attivazione si sono dimostrati essere particolarmente efficaci nel ridurre la dimensione degli agglomerati.
Burning behavior of ADN-based propellants loaded with Al-Mg mechanically activated powders
CRISTILLI, FRANCESCO
2016/2017
Abstract
In recent years the awareness of the environmental risks associated with the use of ammonium perchlorate in solid propellants has led the research community to find an environmentally friendly alternative. Ammonium dinitramide (ADN) is by far the most promising choice and the present work aims at investigating the burning behavior of this oxidizer in combination with the two binders HTPB and GAP, hydroxyl-terminated polybutadiene and glycidyl azide polymer respectively. In order to highlight the differences between the two binders coupled with ADN, specular formulations were produced, loaded with a number of metal powders. The study also intends to assess the influence of mechanically activated powders on the agglomeration process, one of the major drawbacks related to the use of aluminum. With this regard, the latter fuel was combined with magnesium and two batches of activated powder were produced, employing different intensities of the treatment. The powders were comprehensively characterized in their morphology, size, reactivity. The burning rate and the flame temperatures were measured from combustion tests performed in the pressure range from 2 to 13 MPa, by using a high-speed camera and an emission spectrometer. The agglomeration phenomena were investigated in dedicated tests carried out at 0.5, 1 and 2 MPa. The results have pointed out several substantial differences in the behavior of ADN with the inert (HTPB) and the active binder (GAP). All the HTPB/ADNbased propellants exhibit a relatively high ballistic exponent (0.7 − 0.9), above the common standard adopted for civil applications. On the other hand, the GAP/ADN formulations feature a weak pressure dependence (∼ 0.3), with a superior synergy between the components, but also a high burning rate that makes them difficult to apply in civil rockets. Computed tomographies and SEM images of samples extinguished by rapid depressurization evidenced some issues concerning the coupling of ADN with HTPB, also observed in the combustion videos. A poor interaction between the ingredients is acknowledged, underlined by the fact that the oxidizer decomposes quickly and leaves the binder behind, which pyrolyzes at a later stage in the flame zone. Furthermore, such propellants featured very low flame temperatures, far below the adiabatic values. For what may concern the aggregation phenomenon, both the addition of magnesium and the activation treatment proved to be extremely effective in reducing the size of the agglomerates. The study is part of the GRAIL project, which has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 638719.File | Dimensione | Formato | |
---|---|---|---|
CRISTILLI - Burning Behavior of ADN-Based Propellants Loaded with Al-Mg Mechanically Activated Powders.pdf
solo utenti autorizzati dal 10/07/2018
Descrizione: 2017_07_Cristilli
Dimensione
48.81 MB
Formato
Adobe PDF
|
48.81 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/135190