In the recent years, the space market has focused on the insertion of satellites (mostly for communications) into the Geostationary Earth orbit, demanding the brand-newest and most efficient technologies. Since the low-thrust propulsive systems have been highly developed in the last decades, the strategy has changed from the classical high-thrust chemical propulsion to innovative electrical propulsion systems. All-electric missions are more effective because they allow the increase of the payload guaranteeing a lowering in the fuel consumption, as it was operationally proved for the first time in 2015 with the Boeing 702SP satellite. On the other hand, they suffer from very high times of transfer for the current level of thruster accelerations. Different strategies have been proposed to overcome this issue. The concept of minimum time hybrid transfer, for instance, suggests the division of the whole transfer into both a high-thrust and a low-thrust segment. In order to investigate the optimality of these transfers, both segments must be studied separately. Focusing on the low-thrust part, powerful techniques are needed due to the continuous nature of the control. Opposite to the case of impulsive maneuvers, minimum time low-thrust trajectory optimization problems require of techniques such as the Calculus of Variations. In this framework, this thesis is borned in order to provide an off-line database of a variety of minimum time low-thrust transfers, in such a way that a rapid hybrid optimal analysis may be done in future researches. By using an indirect method through shooting strategies together with homotopy techniques, a set of orbit raising to GEO trajectories are computed and analyzed, in order to extract solid conclusions related to the evolution of the Lagrange multipliers and the transfer time.
Negli ultimi anni, il mercato spaziale si è focalizzato nell’inserimento di satelliti (di cui la maggior parte sono destinati alle comunicazioni) nell’orbita geostazionaria, esigendo le tecnologie più recenti ed efficaci. Allo stesso tempo, la propulsione a bassa spinta ha subito una rapida evoluzione, diventando così una valida alternativa ai sistemi propulsivi classici. La propulsione elettrica, appartenente alla categoria dei sistemi a bassa spinta, ha permesso la crescita del carico utile attraverso la diminuzione del consumo di propellente. La piattaforma 702SP, realizzata da Boeing, è stata la prima a raggiungere l’orbita geostazionaria attraverso l’utilizzo della sola propulsione elettrica nel 2015. Tuttavia, a causa della spinta molto bassa, i tempi di trasferimenti sono notevolmente aumentati rispetto a quelli ottenuti con i classici sistemi propulsivi ad alta spinta. L’analisi di questa tipologia di traiettorie ha dato il via allo sviluppo di tecniche di ottimizzazione del tempo di volo. In questa tesi, mediante il Calcolo delle Variazioni, le metodologie di shooting e le tecniche di omotopia, il Two Point Boundary Value Problem per raggiungere l’orbita geostazionaria viene risolto per differenti orbite di partenza. Lo studio proposto nasce dalla necessità di procurare una base di dati off-line per possibili ricerche future nell’ambito dei trasferimenti ibridi, in cui vengono combinate le prestazioni dei sistemi propulsivi a bassa ed alta spinta. Infine, conclusioni rilevanti sono estratte riguardo l’evoluzione dei moltiplicatori di Lagrange e del tempo di volo.
Indirect optimization of electric propulsion orbit raising to GEO with homotopy
RAMOS MORON, NATIVIDAD
2016/2017
Abstract
In the recent years, the space market has focused on the insertion of satellites (mostly for communications) into the Geostationary Earth orbit, demanding the brand-newest and most efficient technologies. Since the low-thrust propulsive systems have been highly developed in the last decades, the strategy has changed from the classical high-thrust chemical propulsion to innovative electrical propulsion systems. All-electric missions are more effective because they allow the increase of the payload guaranteeing a lowering in the fuel consumption, as it was operationally proved for the first time in 2015 with the Boeing 702SP satellite. On the other hand, they suffer from very high times of transfer for the current level of thruster accelerations. Different strategies have been proposed to overcome this issue. The concept of minimum time hybrid transfer, for instance, suggests the division of the whole transfer into both a high-thrust and a low-thrust segment. In order to investigate the optimality of these transfers, both segments must be studied separately. Focusing on the low-thrust part, powerful techniques are needed due to the continuous nature of the control. Opposite to the case of impulsive maneuvers, minimum time low-thrust trajectory optimization problems require of techniques such as the Calculus of Variations. In this framework, this thesis is borned in order to provide an off-line database of a variety of minimum time low-thrust transfers, in such a way that a rapid hybrid optimal analysis may be done in future researches. By using an indirect method through shooting strategies together with homotopy techniques, a set of orbit raising to GEO trajectories are computed and analyzed, in order to extract solid conclusions related to the evolution of the Lagrange multipliers and the transfer time.File | Dimensione | Formato | |
---|---|---|---|
2017_7_Ramos.pdf
accessibile in internet per tutti
Descrizione: Thesis text
Dimensione
14.88 MB
Formato
Adobe PDF
|
14.88 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/135192