In the last decades, the stringent regulations on pollution emissions and the economic interest in lowering fuel consumption led to the the development of aircraft with lighter and slenderer airframe. An undesired consequence of this configurations is represented by the high deformations that the aircraft experiences during flight, which reduce the lifetime of the aircraft because of the resulting high levels of stress. Among the phenomena that may generate these vibrations, a major role is played by gusts, since air is never perfectly steady. For their possible catastrophic consequences, several solutions have been developed in the last century to alleviate the effects on the structure due to gusts. In this work, an active controller for the gust load alleviation has been designed for a passenger aircraft. The system architecture is composed by two independent static-state feedback regulators: a LQR for the stabilisation and the control of the rigid vibrations induced by the gust and a H-infinity controller to alleviate the wing root bending moment generated by the gust. Fully defined actuation models and a partial state observer have been included in the system. Twelve different numerical plants, related to specific flight conditions and mass configurations, have been used for both the design and the performance verification of the controller. The control law has been designed applying the linear matrix equality approach, which consists in the definition and resolution of the Lyapunov matrix inequalities, defined considering all the aircraft numerical plants. This process allowed to define a robust controller that provides optimal performance: the controller achieve the alleviation of the gust load for all the flight conditions and for all the gust gradients imposed by the certifications, obtaining an alleviation of the the critical gust in the most critical flight condition of 15.62%. The compliance with the certification requirements, especially related to command application, has been assessed for the entire set of flight conditions and gust gradients. Finally, the randomized approach for performance verification has been applied to assess the control robustness to uncertainties. Selecting specific flight conditions, perturbed models have been created and the alleviation performance have been statistically studied, taking as reference the system responses to the critical gust. The controller always ensures a minimum load alleviation by the 10% for uncertainty radius lower than 5%. When uncertainties have higher radius, the probability of alleviation falls reaching minimum alleviation probabilities around the 80% for an uncertainty radius of 20%.
Negli ultimi decenni, le normative sulle emissioni inquinanti e l'interesse economico legato alla riduzione dei consumi hanno portato allo sviluppo di aerei con un strutture leggere e snelle. Una conseguenza indesiderata di queste configurazioni è rappresentata dalle alte deformazioni a cui l'aereo è soggetto durante il volo, che riducono la durata utile del velivolo a causa degli elevati livelli di carico. Tra i fenomeni che causano queste vibrazioni, le raffiche costituiscono un problema fondamentale, visto che l'aria non è mai perfettamente ferma. In questo lavoro è stato progettato un controllore per la riduzione dei carichi di raffica per un velivolo passeggeri. L'architettura del sistema è composta da due regolatori indipendenti: un LQR per la stabilizzazione e il controllo delle vibrazioni rigide indotte dalla raffica e un controllore H∞ per alleviare il momento flettente alla radice dell'ala generato dalla raffica. Il sistema comprende anche modelli completi di attuazione e uno osservatore parziale per la ricostruzione del vettore degli stati. Per la progettazione e la valutazione delle prestazioni del controllore, sono stati utilizzati 12 modelli del velivolo, ciascuno relativo a condizioni di volo e peso differente. La legge di controllo è stata definita tramite l'approccio LMI, che consiste nella definizione e risoluzione della disuguaglianza matriciale di Lyapunov. Definendo la disuguaglianza con tutti i modelli del velivolo, è stato possibile ottenere un controllore robusto dalle prestazioni ottime: il controllore ottiene l'attenuazione del carico di raffica per tutte le condizioni di volo e per tutti i gradienti di raffica imposti dalle certificazioni, garantendo un'attenuazione della raffica critica del 15.62% per il velivolo nella configurazione più critica. Insieme all'attenuazione del carico, è stato verificato che il controllore rispettasse i requisiti di certificazione, in particolare quelli legati utilizzo dei comandi di alettone. Infine, gli algoritmi randomizzati per la verifica probabilistica delle prestazioni sono stati utilizzati per misurare la robustezza del controllore alle incertezze. Scegliendo alcune condizioni di volo, sono stati definiti dei modelli perturbati valutando poi le prestazioni del controllore. Durante questa analisi, la valutazione è stata effettuata esclusivamente tramite la raffica critica. Il regolatore assicura una riduzione del 10% del carico fino ad un valore di incertezza pari al 5%. Superato questo valore, la probabilità di alleviamento diminuisce, raggiungendo un valore minimo pari all'80% in corrispondenza di un'interezza pari al 20%.
A two channel control system and state observer for gust load alleviation of a transport aircraft
FAVIER, ALBERTO
2016/2017
Abstract
In the last decades, the stringent regulations on pollution emissions and the economic interest in lowering fuel consumption led to the the development of aircraft with lighter and slenderer airframe. An undesired consequence of this configurations is represented by the high deformations that the aircraft experiences during flight, which reduce the lifetime of the aircraft because of the resulting high levels of stress. Among the phenomena that may generate these vibrations, a major role is played by gusts, since air is never perfectly steady. For their possible catastrophic consequences, several solutions have been developed in the last century to alleviate the effects on the structure due to gusts. In this work, an active controller for the gust load alleviation has been designed for a passenger aircraft. The system architecture is composed by two independent static-state feedback regulators: a LQR for the stabilisation and the control of the rigid vibrations induced by the gust and a H-infinity controller to alleviate the wing root bending moment generated by the gust. Fully defined actuation models and a partial state observer have been included in the system. Twelve different numerical plants, related to specific flight conditions and mass configurations, have been used for both the design and the performance verification of the controller. The control law has been designed applying the linear matrix equality approach, which consists in the definition and resolution of the Lyapunov matrix inequalities, defined considering all the aircraft numerical plants. This process allowed to define a robust controller that provides optimal performance: the controller achieve the alleviation of the gust load for all the flight conditions and for all the gust gradients imposed by the certifications, obtaining an alleviation of the the critical gust in the most critical flight condition of 15.62%. The compliance with the certification requirements, especially related to command application, has been assessed for the entire set of flight conditions and gust gradients. Finally, the randomized approach for performance verification has been applied to assess the control robustness to uncertainties. Selecting specific flight conditions, perturbed models have been created and the alleviation performance have been statistically studied, taking as reference the system responses to the critical gust. The controller always ensures a minimum load alleviation by the 10% for uncertainty radius lower than 5%. When uncertainties have higher radius, the probability of alleviation falls reaching minimum alleviation probabilities around the 80% for an uncertainty radius of 20%.File | Dimensione | Formato | |
---|---|---|---|
2017_07_Favier.pdf
non accessibile
Descrizione: Thesis text
Dimensione
11.49 MB
Formato
Adobe PDF
|
11.49 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/135264