The present work shows the numerical and experimental study of a sliding vane pump and its application in a small scale organic Rankine cycle. The aim of the mathematical and numerical study is the development of a tool able to predict the pump flow rate for a given geometry at various working conditions. Differently from the previous model, which was only able to compute the ideal flow rate, the new model take into account internal leakages and the pressure losses caused by suction and discharge ports geometry. The numerical model has been initially validated with experimental data obtained by the tests conducted on an already designed pump prototype, and have been used to improve pump performances. The numerical validation shown the high influence of clearances on internal leakages leading to a redesign of the pump to improve its performances, reducing axial clearances between rotor sides and end-plates from 0.1mm to 0.06 mm. The new design of the pump has heavily improved performances with the respect to the initial prototype.At 1500 rpm and unducted outlet, the flow rate has improved by 6% while with a pressure gradient equal to 15bar the optimized pump ensures a flow rate 96% higher than the initial prototype. Before employing the pump in the ORC system, it has been tested on a water test bench at various temperatures in order to study the influence of fluid viscosity on pump performances. The validation of the numerical model has been repeated with data obtained from the final design tests resulting in an average error of 2.2% at 1500 rpm. Finally the pump, which was initially incompatible with the organic Rankine cycle due to an insufficient flow rate, has been tested at various rotational speeds. The new pump is able to reach a flow rate sufficient to sustain the Rankine cycle even at very low rotational speed and reached a cycle efficiency of 5.7 % at 1700 rpm.
Il presente elaborato mostra lo studio numerico e sperimentale condotto su una pompa volumetrica a palette e la sua applicazione in un ciclo Rankine a fluido organico di piccola taglia. L‘obiettivo dello studio numerico e‘ stato lo sviluppo di uno strumento in grado di prevedere la portata volumetrica di una pompa a palette di una data geometria in varie condizioni operative. Differentemente dal modello precedente, che prevedeva solo il calcolo della portata volumetrica ideale, il nuovo modello tiene conto dell‘effetto dei trafilamenti interni e delle perdite di carico dovute all‘aspirazione e allo scarico. Il modello numerico e‘ stato inizialmete validato utilizzando i dati ottenuti da una prima campagna sperimentale condotta su un prototipo di pompa sviluppato in un precedente lavoro di tesi, e dai risultati ottenuti si e‘ decisa la direzione da seguire per migliorare le performance della pompa stessa. La validazione ha messo in luce l‘impatto che i giochi assiali tra rotore e coperchi hanno sulla portata volumetrica, portando ad una modifica degli stessi giochi riducendoli da un valore di 0.1 mm a 0.06 mm. Il nuovo design della pompa ha incrementato notevolmente le performance rispetto al prototipo di partenza. Alla velocita‘ di 1500 rpm la nuova pompa ha visto un aumento della porta del 6 % mentre con un gradiente di pressione pari a 15 bar il miglioramento e‘ stato del 96%. Prima di utilizzare la pompa nel ciclo ORC, essa e‘ stata testata su di un banco ad acqua variando la temperatura della stessa al fine di studiare il comportamento della pompa e l‘influenza sulle performance della viscosita‘. La validazione del modello numerico e‘ stata ripetuta con i dati ottenuti da quest‘ultima campagna sperimentale ottenendo un errore del 2.2 % alla velocita‘ di 1500 rpm. In conclusione la pompa, che inizialmente non era compatibile con il ciclo Rankine a causa della sua incapacita‘ di fornire la portata di fluido sufficiente a sostenere il ciclo, e‘ stata utilizzata nel ciclo e testata a varie velocita‘ di rotazione. La nuova pompa e‘ stata in grado di sostenere la portata di fluido sufficiente a sostenere il ciclo anche a bassi regimi e, ad una velocita‘ di 1700 rpm, ha permesso al ciclo di raggiungere un rendimento complessivo del 5.7%.
Numerical and experimental analyses of a sliding-vane pump for ORC applications
FOSSEMO', STEFANO
2016/2017
Abstract
The present work shows the numerical and experimental study of a sliding vane pump and its application in a small scale organic Rankine cycle. The aim of the mathematical and numerical study is the development of a tool able to predict the pump flow rate for a given geometry at various working conditions. Differently from the previous model, which was only able to compute the ideal flow rate, the new model take into account internal leakages and the pressure losses caused by suction and discharge ports geometry. The numerical model has been initially validated with experimental data obtained by the tests conducted on an already designed pump prototype, and have been used to improve pump performances. The numerical validation shown the high influence of clearances on internal leakages leading to a redesign of the pump to improve its performances, reducing axial clearances between rotor sides and end-plates from 0.1mm to 0.06 mm. The new design of the pump has heavily improved performances with the respect to the initial prototype.At 1500 rpm and unducted outlet, the flow rate has improved by 6% while with a pressure gradient equal to 15bar the optimized pump ensures a flow rate 96% higher than the initial prototype. Before employing the pump in the ORC system, it has been tested on a water test bench at various temperatures in order to study the influence of fluid viscosity on pump performances. The validation of the numerical model has been repeated with data obtained from the final design tests resulting in an average error of 2.2% at 1500 rpm. Finally the pump, which was initially incompatible with the organic Rankine cycle due to an insufficient flow rate, has been tested at various rotational speeds. The new pump is able to reach a flow rate sufficient to sustain the Rankine cycle even at very low rotational speed and reached a cycle efficiency of 5.7 % at 1700 rpm.File | Dimensione | Formato | |
---|---|---|---|
2017_12_Fossemo'.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
5.26 MB
Formato
Adobe PDF
|
5.26 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/135315