Regenerative medicine can be simply defined as a wide group of the so-called “life sciences”, whose main aim is to replace or regenerate human cells, tissues or organs to restore or establish normal function. Tissue Engineering is a part of this wider concept and it focuses on the treatment of injured or diseased human tissues by implanting bioartificial grafts obtained with the combination of human cells seeded on scaffolds made of specific biomaterials, mimicking the natural microenvironment. The complexity of such bioartificial systems needs to be tackled by a highly multidisciplinary approach and the biomedical engineering contribution is fundamental to reach those challenging aims. The cartilage tissue engineering (together with the skin tissue) is one of the most promising topics in term of potential and actual clinical outcomes compared to the regeneration of other human tissues (thanks to the lack of innervation, vascularization and “metabolic” roles). This clinical applicability, anyway, requires a very high quality of the implantable grafts, in terms of cells seeding efficiency, stability of the desired phenotypes, purity, sterility and efficiency of the synthesis of appropriate extra-cellular proteins and matrices (chondrogenesis). These goals have been partially reached so far by a confined and forced perfusion of the medium through the graft during the incubation, thus augmenting the seeding efficiency and the supply of the nutrients inside the three-dimensional microenvironment, but it’s not enough for a clinical trial optimization. The automation of the medium replacement, on the other hand, can further deeply increase the robustness and the standardization of the process and the quality of the outcomes, minimizing the manual operations and all the related risks of contamination and mistakes. The general purpose of this Master’s thesis is to improve the level of automation of a patented bioreactor, named T-CUP (Tissue Culture Under Perfusion), which will be used to perform a regenerative-medicine-based clinical trial (scheduled for 2017 - 2018) with the implantation of engineered cartilage grafts for the treatment of injured knee joints, starting from a biopsy of the nasal tissue of the same patient. More specifically, the work is focused on the design, development and biological validation of an innovative electronic device and method to perform a complete automatic exchange of the cell culture media during the entire period of cartilage tissue manufacturing. Every type of cell culture, indeed, needs some medium replacements with regular time intervals between each of them, to keep the homeostasis (pH level, nutrients supply, biological waste removal) inside the engineered tissue and to obtain the desired phenotypes. These operations are currently manually held by specialized operators, that have to strictly follow the entire tissue manufacturing procedure. In the end, the above-mentioned device will be able to automate those operations, thus streamlining the manufacturing phase. The main outcome of this Master’s thesis will be a physical embodiment of the biologically-validated prototype ready to be used by the operators inside the hospital. The existing T-CUP bioreactor will be finally equipped with this new electronic device able to monitor, control, follow and assist the medium exchange procedures during the production of the graft inside the clean room for the clinical trial. The project will be organized essentially as a device development activity. The first part of the thesis has been focusing on the design of the device “from scratch”, listing all the needed requirements based on data obtained from the biological experiments that have been carried out so far in the laboratory. Then a state-of-art research has been performed, focussing on possible solutions available on the market. The third step is represented by the developing activity to obtain a first “alpha” and “beta” prototypes based on the previous step outcomes. In the future, a strict and as complete as possible biological validation of the device will be held, to assess the actual quality enhancement of the engineered cartilage obtained and to tune the features of the prototype to optimize its GMP-compliance and to embed it within the final industrial bioreactor, ready to be used for the clinical applications.
Il lavoro svolto per la stesura della presente tesi è stato rivolto alla progettazione e prototipazione di un sistema automatico di ricambio del mezzo di coltura per un bioreattore brevettato e realizzato presso il dipartimento di biomedicina dell’università-ospedale di Basilea, Svizzera. Il nome noto in letteratura per questo sopra citato bioreattore è T-CUP (Tissue Culture Under Perfusion). Il bioreattore T-CUP è un sistema ad auto-perfusione, che comprende nel medesimo dispositivo sia una camera di alloggio e coltura cellulare sia un sistema di perfusione a soffietto integrato che ne permette l’utilizzo senza alcun bisogno di pompe aggiuntive esterne e che permette la coltura dinamica a perfusione confinata alternata di costrutti ingegnerizzati porosi per la medicina rigenerativa. L’ingegneria dei tessuti è una disciplina in rapida evoluzione ad elevata vocazione interdisciplinare che applica i principi dell’ingegneria e delle cosiddette “life sciences” per realizzare dei sostituti biologici in grado di riparare, mantenere o incrementare le funzioni di un tessuto umano. L’ingegneria dei tessuti mira a sintetizzare in vitro una porzione di tessuto biologico, talvolta chiamato “graft” o costrutto, che sostanzialmente si basa su tre pilastri costitutivi fondamentali: le cellule, che possono provenire da svariate fonti, con una crescente predilezione negli ultimi anni per le cellule staminali o progenitrici ed autologhe, cioè estratte tramite delle biopsie a minima invasività dallo stesso paziente che riceverà poi il graft una volta maturato in laboratorio; le matrici di supporto, o “scaffold”, che altro non sono che l’ambiente fisico-chimico su cui le cellule aderiscono, proliferano e sintetizzano la loro matrice extracellulare, che nel paradigma più classico dell’ingegneria dei tessuti dovrà sostituire lo scaffold durante la sua stessa degradazione e riassorbimento in vivo per lasciare posto al tessuto naturale; ed infine una serie di opportuni segnali per dirigere il comportamento biologico delle popolazioni cellulari residenti lo scaffold stesso. Questi segnali possono essere di tipo biochimico tramite l’uso di molecole solubili nel mezzo di coltura o di tipo fisico (elettro-meccanico), come sforzi di taglio alle pareti, pressione idrostatica, trazione diretta e così via. I bioreattori sono le macchine che gestiscono questi costrutti durante la loro maturazione, modulandone appropriatamente i segnali in ingresso e uscita nonché monitorando e controllando in modo preciso tutti i parametri essenziali per il corretto metabolismo cellulare e per il mantenimento dell’omeostasi. Proprio l’omeostasi è di fondamentale interesse nella progettazione di bioreattori. Uno dei processi più importanti è in tal senso la sostituzione periodica del mezzo di coltura, che nella stragrande maggioranza dei casi viene effettuato manualmente dagli operatori di laboratorio, con cadenza settimanale e tramite manipolazione diretta dei supporti di coltura, anche nel caso di trial clinici per terapie avanzate. L’automazione di questo processo è una pietra miliare verso la traslazione clinica di molti dei progetti di ricerca dell’attuale ingegneria dei tessuti ed i bioreattori si prestano ad essere degli essenziali strumenti per snellire il processo di approvazione dei trial clinici da parte degli enti regolatori del settore. L’utilizzo di sistemi chiusi integrati permette l’abbattimento dei costi di mantenimento dei grandi impianti che soddisfano le direttive GMP nonché dei costi elevatissimi del personale specializzato, allo stesso tempo diminuendo i rischi di errori accidentali e contaminazioni, restituendo prodotti ad elevata standardizzazione. Per questa tesi è stato sviluppato un prototipo fisico di dispositivo elettronico programmabile in grado di gestire, monitorare ed effettuare il ricambio del mezzo di coltura nel bioreattore T-CUP, già citato. Assieme all’unità di controllo munita di timer programmabile per eseguire il ricambio a frequenza fissata, sono stati sviluppati uno scambiatore di calore e gas per il condizionamento del medium fresco prelevato dal comparto refrigerato e pompato all’interno della camera di coltura nell’incubatore biologico ed un sistema di gestione delle linee tramite elettrovalvole progettate e realizzate ex novo. Il campo di interesse in questo caso è la rigenerazione della cartilagine articolare del ginocchio tramite impianto di costrutto ingegnerizzato con condrociti nasali autologhi e siero autologo (vedi Nose-to-Knee), seminati su matrici di collagene di tipo I e III porcino già largamente usate nella pratica clinica per le applicazioni chirurgiche tradizionali in merito (ACI, MACI). Questo prototipo verrà validato biologicamente in fase pre-clinica e sarà poi integrato nella versione rinnovata del bioreattore T-CUP per un futuro clinical trial fase 1 basato sulla maturazione di costrutti di cartilagine ingegnerizzata. Verrà inoltre munito di sensori di pH del mezzo di coltura per ricambi ad anello chiuso controllati con valore del pH appunto e non con solo temporizzatore.
Design and development of a novel automatic system for bioreactor culture medium exchange
MOGENTALE, DAVIDE
2016/2017
Abstract
Regenerative medicine can be simply defined as a wide group of the so-called “life sciences”, whose main aim is to replace or regenerate human cells, tissues or organs to restore or establish normal function. Tissue Engineering is a part of this wider concept and it focuses on the treatment of injured or diseased human tissues by implanting bioartificial grafts obtained with the combination of human cells seeded on scaffolds made of specific biomaterials, mimicking the natural microenvironment. The complexity of such bioartificial systems needs to be tackled by a highly multidisciplinary approach and the biomedical engineering contribution is fundamental to reach those challenging aims. The cartilage tissue engineering (together with the skin tissue) is one of the most promising topics in term of potential and actual clinical outcomes compared to the regeneration of other human tissues (thanks to the lack of innervation, vascularization and “metabolic” roles). This clinical applicability, anyway, requires a very high quality of the implantable grafts, in terms of cells seeding efficiency, stability of the desired phenotypes, purity, sterility and efficiency of the synthesis of appropriate extra-cellular proteins and matrices (chondrogenesis). These goals have been partially reached so far by a confined and forced perfusion of the medium through the graft during the incubation, thus augmenting the seeding efficiency and the supply of the nutrients inside the three-dimensional microenvironment, but it’s not enough for a clinical trial optimization. The automation of the medium replacement, on the other hand, can further deeply increase the robustness and the standardization of the process and the quality of the outcomes, minimizing the manual operations and all the related risks of contamination and mistakes. The general purpose of this Master’s thesis is to improve the level of automation of a patented bioreactor, named T-CUP (Tissue Culture Under Perfusion), which will be used to perform a regenerative-medicine-based clinical trial (scheduled for 2017 - 2018) with the implantation of engineered cartilage grafts for the treatment of injured knee joints, starting from a biopsy of the nasal tissue of the same patient. More specifically, the work is focused on the design, development and biological validation of an innovative electronic device and method to perform a complete automatic exchange of the cell culture media during the entire period of cartilage tissue manufacturing. Every type of cell culture, indeed, needs some medium replacements with regular time intervals between each of them, to keep the homeostasis (pH level, nutrients supply, biological waste removal) inside the engineered tissue and to obtain the desired phenotypes. These operations are currently manually held by specialized operators, that have to strictly follow the entire tissue manufacturing procedure. In the end, the above-mentioned device will be able to automate those operations, thus streamlining the manufacturing phase. The main outcome of this Master’s thesis will be a physical embodiment of the biologically-validated prototype ready to be used by the operators inside the hospital. The existing T-CUP bioreactor will be finally equipped with this new electronic device able to monitor, control, follow and assist the medium exchange procedures during the production of the graft inside the clean room for the clinical trial. The project will be organized essentially as a device development activity. The first part of the thesis has been focusing on the design of the device “from scratch”, listing all the needed requirements based on data obtained from the biological experiments that have been carried out so far in the laboratory. Then a state-of-art research has been performed, focussing on possible solutions available on the market. The third step is represented by the developing activity to obtain a first “alpha” and “beta” prototypes based on the previous step outcomes. In the future, a strict and as complete as possible biological validation of the device will be held, to assess the actual quality enhancement of the engineered cartilage obtained and to tune the features of the prototype to optimize its GMP-compliance and to embed it within the final industrial bioreactor, ready to be used for the clinical applications.File | Dimensione | Formato | |
---|---|---|---|
Tesi_Mogentale_updated.pdf
non accessibile
Descrizione: Testo definitivo
Dimensione
7.46 MB
Formato
Adobe PDF
|
7.46 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/135384