Present thesis work is about shock absorbing system of car vehicles made of damper and its rubber top mount. One first focus is on damper component which is featured by a strong dynamic hysteresis as outlined by experimental evidence. Here is proposed a new model of damping force accounting for inertial effect of working fluid (inertance effect) flowing into small ducts of system valves. It can reproduce in a good way experimental force-velocity curves characterizing the system. Hence, the model is validated in a comparative way in respect to force-over-velocity curves from test rigs made for several different dampers from real vehicles and belonging to different car segments. Later on, through additional comparative simulations performed on quarter car models, the influence of inertance effect on car body vertical dynamics is evaluated, resulting to be weak. A second deepening regards top mount and the influence of its stiffness on the efficiency of the overall shock absorbing system. Sensitivity analysis proved that higher efficiencies are in correspondence of stiffer top mounts: even ride comfort performances are enhanced. Two approaches in defining system efficiency are presented: one following transfer function method set in between relative displacement of damper only and relative displacement of the entire system and one ‘energetic’ approach resulting from ratio of RMS values of speeds measured at the same ends. Efficiencies calculated for different top mount stiffness found a good correspondence between the two approaches. In conclusion, it is demonstrated that higher efficiencies of the system are equivalent to systems globally more damped.
Il presente lavoro di tesi si concentra sul sistema smorzante ammortizzatore-tassello di autoveicoli. In particolare, un primo focus pone l’attenzione sul componente ammortizzatore che da evidenza sperimentale è caratterizzato da una marcata isteresi dinamica. Qui è proposto un nuovo modello di forza ammortizzatore che tenendo conto dell’effetto inerziale del fluido di lavoro (inertanza) fluente negli stretti condotti delle sue valvole, è in grado di riprodurre in buona approssimazione le curve forza-velocità di origine sperimentale. Il modello è quindi validato per via comparativa con curve da banco prova per diversi ammortizzatori di effettivi veicoli appartenenti a segmenti automobilistici differenti. Successivamente, mediante simulazioni comparative impiegando modelli a quarto di veicolo, viene valutata l’influenza dell’effetto inerziale sulla dinamica verticale del veicolo dimostrandosi poi di scarsa entità. Un secondo focus è centrato sul tassello e sull’influenza che la sua rigidezza ha sull’efficienza dell’intero sistema smorzante. Analisi di sensitività dimostrano che migliori efficienze sono ottenute impiegando tasselli più rigidi: si riscontrano inoltre migliori performance in termini di comfort. Vengono descritti due diversi metodi per la definizione dell’efficienza di questo sistema: seguendo un approccio basato su funzione di trasferimento tra spostamento relativo ai capi del solo ammortizzatore e spostamenti relativi pertinenti all’ammortizzatore e tassello piuttosto che un approccio ‘energetico’ dato da rapporto tra RMS di velocità misurate alle medesime estremità, la misura dell’efficienza valutata per diverse rigidezze tassello, trova una buona corrispondenza. Si dimostra infine che efficienze migliori per questo tipo di sistema equivalgono a sistemi globalmente più smorzati.
Study of automotive damper and top mount subsystem dynamics for suspension and full-vehicle damping efficiency prediction
POLENGHI, CLAUDIO
2016/2017
Abstract
Present thesis work is about shock absorbing system of car vehicles made of damper and its rubber top mount. One first focus is on damper component which is featured by a strong dynamic hysteresis as outlined by experimental evidence. Here is proposed a new model of damping force accounting for inertial effect of working fluid (inertance effect) flowing into small ducts of system valves. It can reproduce in a good way experimental force-velocity curves characterizing the system. Hence, the model is validated in a comparative way in respect to force-over-velocity curves from test rigs made for several different dampers from real vehicles and belonging to different car segments. Later on, through additional comparative simulations performed on quarter car models, the influence of inertance effect on car body vertical dynamics is evaluated, resulting to be weak. A second deepening regards top mount and the influence of its stiffness on the efficiency of the overall shock absorbing system. Sensitivity analysis proved that higher efficiencies are in correspondence of stiffer top mounts: even ride comfort performances are enhanced. Two approaches in defining system efficiency are presented: one following transfer function method set in between relative displacement of damper only and relative displacement of the entire system and one ‘energetic’ approach resulting from ratio of RMS values of speeds measured at the same ends. Efficiencies calculated for different top mount stiffness found a good correspondence between the two approaches. In conclusion, it is demonstrated that higher efficiencies of the system are equivalent to systems globally more damped.File | Dimensione | Formato | |
---|---|---|---|
2017_07_Polenghi.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
2.78 MB
Formato
Adobe PDF
|
2.78 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/135433