The present work focuses on a microcantilever harvester, exploiting aeroelastic flutter. The cantilever is slender, composed of a structural layer and a piezoelectric layer. The latter allows the conversion of mechanical energy into electrical energy, thanks to piezoelectric transduction. The aim of this thesis is to estimate the optimal conditions of use for the flutter-based harvester. To investigate this system, models with two and three degrees of freedom are developed. Two degrees of freedom are coupled by the electromechanical problem: the voltage and the transverse displacement. Two are coupled through the flutter phenomenon: the transverse displacement and the torsion of the cantilever. The discretization of the system is made thanks to the Rayleigh-Ritz method. Whereas the sectional properties are evaluated with the laminate theory. Preliminary analyses are first performed only on the electromechanical problem, without flutter, to understand the piezoelectric coupling and study different external circuits. Two external circuits are investigated: the resistive circuit (RC) and the resistive-inductive circuit (RLC). The first observation made is the contribution of the piezoelectric layer to the stiffness and the damping of the overall system. Then the optimisation of the electrical parameters is realised to enhance the power generation of the harvester. Optimal values of the resistance and of the inductance are established. For both circuits, the harvested power is greater for smaller mechanical damping ratios. The optimal situation being when the electrical and the mechanical damping ratios are equal. For the resistive circuit, the amount of power generation also depends on the frequency ratio, and it is maximum at resonance and antiresonance. Finally, the inductive circuit seems more efficient than the resistive one; although the optimal inductance is difficult to estimate. The torsional degree of freedom is then added to the previous two degrees of freedom system, providing the energy source of the harvester: the aeroelastic flutter. Flutter, through fluid-structure interaction, sees the coupling of the torsional and vertical motions. At a certain threshold, called critical velocity, a mechanical damping becomes negative and the system falls into an instable regime. The onset of flutter instability is sought after, to unlock the full potential of the harvester. The challenge of a flutter-based harvester is to find the right balance between retrieving too much energy from the wind flow and not retrieving enough, thus having a poor efficiency. Due to the scale of the harvester, this self-excited phenomenon is modelled for low Reynolds number, with a linear approach thanks to Scanlan flutter derivatives. The damping trends of the flutter-based harvester are studied; first without external circuit, and then with the RC and RLC circuit to see the impact of the electrical components. The addition of external circuits increases the damping, through piezoelectric coupling. The optimal values of resistance and inductance are found for the highest mechanical damping ratios obtained, revealing a high efficiency of the piezoelectric transduction. This augmentation of mechanical damping delays the instability by increasing the flutter velocity. The harvested power is more important in the case of the inductive circuit than for the resistive circuit. Finally, the possibility of a non-linear model for flutter has been studied.
Il presente lavoro si concentra su un micro-cantilever, sfruttando la flutter aeroelastica per accoltare dell’energia. Il cantilever è snello, composto da uno strato strutturale e da uno strato piezoelettrico. Quest'ultimo consente la conversione dell'energia meccanica in energia elettrica grazie alla trasduzione piezoelettrica. Lo scopo di questa tesi è quello di stimare le condizioni ottimali di utilizzo per il flutter harvester. Per esplorare questo sistema vengono sviluppati modelli a due o tre gradi di libertà. Due gradi di libertà sono accoppiati dal problema elettromeccanico: la tensione e lo spostamento trasversale. Due sono accoppiati attraverso il fenomeno di fluttuazione: lo spostamento trasversale e la torsione del cantilever. La discretizzazione del sistema avviene grazie al metodo di Rayleigh-Ritz, mentre le proprietà di sezione vengono valutate con la teoria del laminato. Le prime analisi vengono eseguite solo sul problema elettromeccanico, senza flutter, per capire l'accoppiamento piezoelettrico e studiare diversi circuiti esterni. I due circuiti esterni studiati sono il circuito resistivo (RC) e il circuito resistivo-induttivo (RLC). La prima osservazione fatta è il contributo dello strato piezoelettrico alla rigidità e allo smorzamento del sistema complessivo. Poi, l'ottimizzazione dei parametri elettrici viene realizzata per migliorare la generazione di energia del raccoglitore. Sono stati stabiliti valori ottimali della resistenza e dell'induttanza. Per entrambi i circuiti, la potenza raccolta è maggiore per i rapporti di smorzamento meccanici più piccoli. Per il circuito resistivo, dipende anche dal rapporto di frequenza, ed è massima a risonanza e antiresonenza. Infine, il circuito induttivo sembra più efficiente di quello resistivo sebenne l'induttanza ottimale è difficile da stimare. Il grado di libertà torsionale viene aggiunto ai sistemi precedenti con due gradi di libertà, fornendo la fonte di energia del raccoglitore: la flutter aeroelastica. La flutter, attraverso l'interazione fluida-struttura, vede l'accoppiamento dei movimenti torsionali e verticali. Ad una certa soglia, chiamata velocità critica, una smorzata meccanica diventa negativa e il sistema cade in regime instabile. Viene ricercata l'instabilità, per sbloccare il pieno potenziale del raccoglitore. Per raccogliere energia a base di flutter, la sfida è trovare il giusto equilibrio tra recuperare troppa energia dal flusso del vento e non recuperarne abbastanza, resultando quindi in una scarsa efficienza. A causa della scala del raccoglitore, questo fenomeno auto-eccitato è modelizzato per bassi numeri Reynolds, con un approcio lineare grazie ai derivati Scanlan. Si studiano le tendenze di smorzamento del raccoglitore a flutter, in primo luogo senza circuito esterno, e poi anche con il circuito RC e RLC per vedere l'impatto dei circuiti elettrici. L'aggiunta di circuiti esterni aumenta l'ammortizzazione, quindi ritarda l'instabilità a causa dell’aumentando della velocità critica. Il potere raccolto è più importante nel caso del circuito induttivo rispetto al circuito resistivo. Infine, la possibilita d’un modello non lineare e stata investigata.
Harnessing aeroelastic flutter for energy harvesting via piezoelectric transduction
CLOSTRE, AURIANE
2016/2017
Abstract
The present work focuses on a microcantilever harvester, exploiting aeroelastic flutter. The cantilever is slender, composed of a structural layer and a piezoelectric layer. The latter allows the conversion of mechanical energy into electrical energy, thanks to piezoelectric transduction. The aim of this thesis is to estimate the optimal conditions of use for the flutter-based harvester. To investigate this system, models with two and three degrees of freedom are developed. Two degrees of freedom are coupled by the electromechanical problem: the voltage and the transverse displacement. Two are coupled through the flutter phenomenon: the transverse displacement and the torsion of the cantilever. The discretization of the system is made thanks to the Rayleigh-Ritz method. Whereas the sectional properties are evaluated with the laminate theory. Preliminary analyses are first performed only on the electromechanical problem, without flutter, to understand the piezoelectric coupling and study different external circuits. Two external circuits are investigated: the resistive circuit (RC) and the resistive-inductive circuit (RLC). The first observation made is the contribution of the piezoelectric layer to the stiffness and the damping of the overall system. Then the optimisation of the electrical parameters is realised to enhance the power generation of the harvester. Optimal values of the resistance and of the inductance are established. For both circuits, the harvested power is greater for smaller mechanical damping ratios. The optimal situation being when the electrical and the mechanical damping ratios are equal. For the resistive circuit, the amount of power generation also depends on the frequency ratio, and it is maximum at resonance and antiresonance. Finally, the inductive circuit seems more efficient than the resistive one; although the optimal inductance is difficult to estimate. The torsional degree of freedom is then added to the previous two degrees of freedom system, providing the energy source of the harvester: the aeroelastic flutter. Flutter, through fluid-structure interaction, sees the coupling of the torsional and vertical motions. At a certain threshold, called critical velocity, a mechanical damping becomes negative and the system falls into an instable regime. The onset of flutter instability is sought after, to unlock the full potential of the harvester. The challenge of a flutter-based harvester is to find the right balance between retrieving too much energy from the wind flow and not retrieving enough, thus having a poor efficiency. Due to the scale of the harvester, this self-excited phenomenon is modelled for low Reynolds number, with a linear approach thanks to Scanlan flutter derivatives. The damping trends of the flutter-based harvester are studied; first without external circuit, and then with the RC and RLC circuit to see the impact of the electrical components. The addition of external circuits increases the damping, through piezoelectric coupling. The optimal values of resistance and inductance are found for the highest mechanical damping ratios obtained, revealing a high efficiency of the piezoelectric transduction. This augmentation of mechanical damping delays the instability by increasing the flutter velocity. The harvested power is more important in the case of the inductive circuit than for the resistive circuit. Finally, the possibility of a non-linear model for flutter has been studied.File | Dimensione | Formato | |
---|---|---|---|
2017_07_Clostre.pdf
non accessibile
Descrizione: Master Thesis
Dimensione
4.87 MB
Formato
Adobe PDF
|
4.87 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/135497