The purpose of the thesis work is to realize the deposition of graphene on a dealloyed, electroformed free-standing substrate, and to obtain a high-surface area electrode with improved pseudocapacitance for high-performances electronic devices. The selected deposition substrate was an electroformed Ni-Cu alloy, and CVD was selected as the Graphene growing method. Initially, the different copper content (20% and 40%) of the Ni-Cu alloys were obtained by the electroformed process, the electroforming temperatures (50°C and 25°C) were changed to evaluate the effect of electroforming temperature on Ni-Cu foil composition. The characterization of the alloy was done using XRF, XRD, and SEM. Before dealloying, the sample was separated by two parts whose half part was used for the graphene deposition process while another was used as reference. The resulting Ni-Cu alloy (Ni 80%, Cu 20%) was advantageous for graphene deposition. The deposition of few-layers graphene was carried out by means of atmospheric pressure CVD using methane and hydrogen in the gas phase. After the CVD process, the characterization of the Carbon film was analyzed using Raman spectroscopy and optical microscopy. The graphene/Ni-Cu porous alloy (20% Cu) and the reference Ni-Cu alloy were subjected to bare Ni selective oxidation, to obtain nickel oxide hydroxide (NiOOH) which enhance electrical performance of the capacitor. Comparative study of the pseudocapacitances for NiOOH/Cu and NiOOH/Cu/Graphene were carried out by testing cited electrodes in a 2M KOH buffering electrolyte. The results showed a more than 50% performance improve for Graphene enhanced system.
L’obiettivo di questo lavoro di tesi è di ottimizzare la crescita di grafene su lastrine di Nichel-Rame dealligate, al fine di ottenere elettrodi ad elevata area superficiale che mostrino un buon livello di pseudocapacità rispetto alla controparte inorganica. La lega NiCu scelta è stata prodotta per elettroformatura, mentre per la crescita di grafene, si è optato per la deposizione da vapori chimici. Inizialmente si sono ottenute due composizione di lega differenti (20% e 40% in rame) dal processo di elettroformatura, corrispondenti alle due temperature di formatura usate (50°C e 25°C) usate per valutare, appunto, l’effetto della temperatura sulla composizione di lega. La caratterizzazione delle lamine così ottenute è stata fatta usando XRF, XRD e SEM. Prima del processo di dealligazione, il campione è stato separato in due metà, di cui la prima è stata poi sottoposta a CVD, mentre la seconda è stata usata come campione di riferimento. La composizione ottenuta per la lamina NiCu è risultata ottimale per la crescita dello strato di grafene. La deposizione di pochi strati di grafene è stata condotta in un forno per vapori chimici operato a pressione atmosferica, usando metano e idrogeno in fase gas. Successivamente al processo CVD, lo strato carbonio è stato sottoposto a spettroscopia Raman ed ottica. La lastrina di NiCu (20% Cun) ricoperta da pochi strati di grafene e la lastrina senza grafene sono poi state sottoposte a ossidazione della superficie esposta per ottenere NiOOH con proprietà elettriche migliori. Uno studio comparato tra NiOOH/Cu e G/NiOOH/Cu è stato condotto in una soluzione buffer contentete 2M di KOH.
Graphene coated Ni-Cu alloys as high-performance capacitors electrodes
LI, XINZHI
2016/2017
Abstract
The purpose of the thesis work is to realize the deposition of graphene on a dealloyed, electroformed free-standing substrate, and to obtain a high-surface area electrode with improved pseudocapacitance for high-performances electronic devices. The selected deposition substrate was an electroformed Ni-Cu alloy, and CVD was selected as the Graphene growing method. Initially, the different copper content (20% and 40%) of the Ni-Cu alloys were obtained by the electroformed process, the electroforming temperatures (50°C and 25°C) were changed to evaluate the effect of electroforming temperature on Ni-Cu foil composition. The characterization of the alloy was done using XRF, XRD, and SEM. Before dealloying, the sample was separated by two parts whose half part was used for the graphene deposition process while another was used as reference. The resulting Ni-Cu alloy (Ni 80%, Cu 20%) was advantageous for graphene deposition. The deposition of few-layers graphene was carried out by means of atmospheric pressure CVD using methane and hydrogen in the gas phase. After the CVD process, the characterization of the Carbon film was analyzed using Raman spectroscopy and optical microscopy. The graphene/Ni-Cu porous alloy (20% Cu) and the reference Ni-Cu alloy were subjected to bare Ni selective oxidation, to obtain nickel oxide hydroxide (NiOOH) which enhance electrical performance of the capacitor. Comparative study of the pseudocapacitances for NiOOH/Cu and NiOOH/Cu/Graphene were carried out by testing cited electrodes in a 2M KOH buffering electrolyte. The results showed a more than 50% performance improve for Graphene enhanced system.File | Dimensione | Formato | |
---|---|---|---|
Thesis Li Xinzhi 840775.pdf
non accessibile
Descrizione: Thesis
Dimensione
4.26 MB
Formato
Adobe PDF
|
4.26 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/135589