One of the main goals of today’s automotive industry is to reduce emissions and fuel consumption of all vehicles. The development of energy-efficient vehicles encouraged the introduction of hybrid and full electric vehicles. Today the main point of weakness of full electric vehicles is the limited range. The causes that contribute heavily on the reduced range are: the low specific storage capabilities of ultra-capacitors and the aerodynamic drag. The cooling systems typically exploit the air flows provided by the vehicle motion, but in some conditions it would not be enough to reach the cooling targets. Hence cooling fans are placed inside the cooling system in order to ensure the right amount of cooling at all times. The cooling air flows are picked up and rejected in the external air stream that flows around the vehicle, therefore they interact with the vehicle aerodynamics. This has lead to a new focus on detailed and accurate simulations about cooling air flows and their interaction with the vehicle aerodynamics. For these reasons, in the context of high performance full electric vehicle design process, this project has been carried out. It was developed completely at the Dallara Automobili Aerodynamic CFD Department and it is based on the 3D CFD simulations of the complete vehicle geometry tested at different driving speed, where the cooling fans are modeled with different numerical techniques, of different degrees of cost and accuracy, with the target to compare the predictions of the aerodynamic and cooling variables and the cost to benefit ratio related to each model. The conclusion that can be drawn is that there is not a model which is unconditionally suitable for these applications, but the choice of the most appropriate fan model depends on the scrupulous evaluation of the relevance of the aerodynamic, cooling and computational cost aspects that the work presents.
Uno dei principali obiettivi di oggi dell’industria automobilistica è quello di ridurre i consumi di carburante e le emissioni. Lo sviluppo di veicoli più efficienti ha portato all’introduzione di veicoli ibridi e totalmente elettrici. Oggi il principale punto di debolezza dei veicoli completamente elettrici è dato dalla ridotta autonomia. Le cause di questa scarsa autonomia sono principalmente due: la scarsa capacità specifica degli ultracapacitori e la resistenza aerodinamica. Il sistema di raffreddamento sfrutta generalmente il movimento del veicolo, ma in alcune condizioni può non essere sufficiente. Nei sistemi di raffreddamento si adottano quindi delle ventole in modo da assicurare sempre le giuste capacità di raffreddamento. I flussi vengono prelevati ed evacuati all’esterno del veicolo, perciò interagiscono con l’aerodinamica. Se questo aspetto non fosse attentamente considerato, porterebbe ad un peggioramento delle prestazioni. Ciò ha portato a un nuovo campo di studio riguardo i flussi di raffreddamento e le loro interazioni con l’aerodinamica attraverso simulazioni accurate. Per queste ragioni è stato sviluppato questo progetto, in un contesto che riguarda un veicolo sportivo ad alte prestazioni completamente elettrico. Il lavoro è stato sviluppato interamente presso il Reparto Aerodinamica CFD di Dallara Automobili ed è basato su simulazioni CFD della geometria completa del veicolo, testata a differenti velocità di guida, dove le ventole sono modellate per mezzo di diversi modelli numerici, di differente accuratezza e costo computazionale, con l’obiettivo di confrontare i risultati derivanti da ogni modello pesandoli sul rapporto costi-benefici associato ad ognuno di essi. In conclusione non è possibile decretare una metodologia come incondizionatamente migliore rispetto alle altre, ma la scelta del modello più appropriato dipende dalla valutazione scrupolosa della rilevanza degli aspetti aerodinamici, di raffreddamento e computazionali che il lavoro in questione possiede.
CFD analysis : impact of cooling flows on high performance full electric vehicle's aerodynamics and cooling capabilities
DELLA GIOVANNA, ANDREA
2016/2017
Abstract
One of the main goals of today’s automotive industry is to reduce emissions and fuel consumption of all vehicles. The development of energy-efficient vehicles encouraged the introduction of hybrid and full electric vehicles. Today the main point of weakness of full electric vehicles is the limited range. The causes that contribute heavily on the reduced range are: the low specific storage capabilities of ultra-capacitors and the aerodynamic drag. The cooling systems typically exploit the air flows provided by the vehicle motion, but in some conditions it would not be enough to reach the cooling targets. Hence cooling fans are placed inside the cooling system in order to ensure the right amount of cooling at all times. The cooling air flows are picked up and rejected in the external air stream that flows around the vehicle, therefore they interact with the vehicle aerodynamics. This has lead to a new focus on detailed and accurate simulations about cooling air flows and their interaction with the vehicle aerodynamics. For these reasons, in the context of high performance full electric vehicle design process, this project has been carried out. It was developed completely at the Dallara Automobili Aerodynamic CFD Department and it is based on the 3D CFD simulations of the complete vehicle geometry tested at different driving speed, where the cooling fans are modeled with different numerical techniques, of different degrees of cost and accuracy, with the target to compare the predictions of the aerodynamic and cooling variables and the cost to benefit ratio related to each model. The conclusion that can be drawn is that there is not a model which is unconditionally suitable for these applications, but the choice of the most appropriate fan model depends on the scrupulous evaluation of the relevance of the aerodynamic, cooling and computational cost aspects that the work presents.File | Dimensione | Formato | |
---|---|---|---|
Tesi.pdf
accessibile in internet per tutti
Descrizione: Testo della tesi
Dimensione
44.89 MB
Formato
Adobe PDF
|
44.89 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/135606