In this work, electrochemical, chemical and morphological analyses were performed on a new cathode material (NdBaCo2-xFexO5+δ), based on neodymium- and cobalt-layered perovskites with increasing iron stoichiometry (x = 0.1, 0.2, 0.4). The original cathode material (NdBaCo2O5+δ), no Fe doped, was characterised by mechanical problems related to the difference between the Thermal Expansion Coefficients (TECs) between cathodes and the electrolytic material: Fe doping is introduced in order to limit these problems, balancing TECs. Chemical properties were characterised by means of XRD, SEM and ICP-MS. Electrochemical properties were characterised by means of conductivity and impedance spectroscopy measurements (EIS) on symmetric cells. The electric conductivity tests showed high values (between 150 S/cm and 350 S/cm at 700°C). The electrochemical impedance spectroscopy tests reveal decreasing values of Area Specific Resistance increasing the Fe content inside the cathode material: the best performances (0.17 Ωcm2 at 700°C in air) are obtained at x = 0.4. Modelling of the experimental impedance curves with the approach of the equivalent circuits and by using a detailed physically sound model identifies the following limiting processes for the O2 reduction reaction: the transport inside the electrolyte followed by the transfer across the cathode-electrolyte interface at high frequency; the oxygen ion formation, at middle frequency.
In questo lavoro di tesi è stato condotto uno studio di caratterizzazione elettrochimica, chimica e morfologica su un materiale catodico innovativo, costituito da una perovskite doppia a strati a base di neodimio (NdBaCo2-xFexO5+δ) con stechiometria crescente di ferro (x = 0.1, 0.2, 0.4). Il materiale catodico originale senza il doping col ferro (NdBaCo2O5+δ) è caratterizzato da problemi di natura meccanica causati da differenti coefficienti di dilatazione termica lineare tra catodo ed elettrolita. L’aggiunta di ferro supera questo problema, riducendo le tensioni meccaniche durante l’utilizzo. Le proprietà chimiche sono state caratterizzate tramite analisi XRD, SEM e ICP-MS. Le proprietà elettrochimiche sono state caratterizzate attraverso misure di conducibilità e spettroscopia d’impedenza (EIS) su celle simmetriche. Le prove di conducibilità hanno mostrato valori elevati (tra 150 S/cm e 350 S/cm a 700°C). Le prove di impedenza hanno rilevato che i valori di Area Specific Resistance diminuiscono, aumentando il doping con il ferro nei materiali catodici: le migliori prestazioni (0.17 Ωcm2 a 700°C in aria) vengono raggiunte per x = 0.4. L’analisi di modello delle curve di impedenza sperimentali con l’approccio dei circuiti equivalenti ed attraverso un modello dettagliato del catodo individua i seguenti processi limitanti per la reazione di riduzione di O2: il trasporto dello ione ossigeno all’interno dell’elettrolita seguito dal trasferimento all’interfaccia catodo-elettrolita, alle alte frequenze; la formazione di uno ione ossigeno, alle frequenze intermedie.
Neodymium-based barium cobaltite cathodes for IT-SOFCs applications : experimental and model analysis of the effect of Fe addition
BALSOTTI, DAVIDE;CURCIO, MARCO
2016/2017
Abstract
In this work, electrochemical, chemical and morphological analyses were performed on a new cathode material (NdBaCo2-xFexO5+δ), based on neodymium- and cobalt-layered perovskites with increasing iron stoichiometry (x = 0.1, 0.2, 0.4). The original cathode material (NdBaCo2O5+δ), no Fe doped, was characterised by mechanical problems related to the difference between the Thermal Expansion Coefficients (TECs) between cathodes and the electrolytic material: Fe doping is introduced in order to limit these problems, balancing TECs. Chemical properties were characterised by means of XRD, SEM and ICP-MS. Electrochemical properties were characterised by means of conductivity and impedance spectroscopy measurements (EIS) on symmetric cells. The electric conductivity tests showed high values (between 150 S/cm and 350 S/cm at 700°C). The electrochemical impedance spectroscopy tests reveal decreasing values of Area Specific Resistance increasing the Fe content inside the cathode material: the best performances (0.17 Ωcm2 at 700°C in air) are obtained at x = 0.4. Modelling of the experimental impedance curves with the approach of the equivalent circuits and by using a detailed physically sound model identifies the following limiting processes for the O2 reduction reaction: the transport inside the electrolyte followed by the transfer across the cathode-electrolyte interface at high frequency; the oxygen ion formation, at middle frequency.File | Dimensione | Formato | |
---|---|---|---|
Tesi MSc Marco Curcio (836775) e Davide Balsotti (836774) .pdf
non accessibile
Descrizione: Tesi MSc Marco Curcio (836775) e Davide Balsotti (836774)
Dimensione
10.68 MB
Formato
Adobe PDF
|
10.68 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/135756