The development of a smart self-healing dynamic hydrogel may be of extreme importance in the tissue engineering filed, as well in the design and realization of versatile scaffolds for tissue regeneration. In this work, the development of a new system based on Hyaluronic acid (HA) and Polyethylene glycol (PEG), with the fundamental employment of the Phenylboronicacid (PBA), is thought to be inserted in this scientific panorama. This brand-new polymeric material combines the properties of Polyethylene glycol with the properties given by the dynamic covalent bond created by the presence of Phenylboronicacid. Several examples of hydrogels employing PEG or PBA, in tissue regeneration, have already been studied due to their properties: biocompatibility, versatility and mechanical stability of PEG as well as dynamicity and multi-responsiveness of PBA dynamic covalent bond. However, no studies have been conducted yet about the possibility of conjugate those properties in a single hydrogel material, suggesting a valid alternative to be investigated. To be a performant material and a valid alternative, this hydrogel should meet the already mentioned properties of PEG and PBA, giving life to a biocompatible, self-healing, stimuli-responsive, dynamic material, able to face alone a wide range of different applicative solutions. The aim of this work is to provide an easy and fast method for the synthesis and development of this innovative hydrogel, based on four main elements: Polyethylene glycol (PEG), Maltose, Hyaluronic Acid (HA) and Phenylboronicacid (PBA). Once the synthesis of the two main chains (PEG-Maltose and HA-PBA) will be completed, upon mixing in an aqueous environment, the two extremities (PBA and Maltose) will crosslink generating the so called dynamic covalent bond, thus the hydrogel. First eight arms- PEG is functionalized with a two-step reaction: Tosyl groups in a reaction with p-Toluenesulfonyl chloride and then Tosyl groups substituted by Azide groups in a reaction with Sodium Azide. In parallel, a three-step reaction is carried on preparing Maltose: in the first step, pure Maltose is functionalized with Acetoxy groups for Hydroxyl groups, in the second step, the compound reacts with Propargyl Alcohol to add a triple bond terminal to the molecule and then, in the final step, the remaining Acetyl groups are removed in favour of Hydroxyl groups again. PEG-Maltose chain is readily realized via Click-Chemistry reaction between the triple bond of the modified Maltose and the Azide groups of the previously modified PEG. Simultaneously, Hyaluronic Acid is directly modified with Phenylboronicacid in a one reaction process. The outcome of all the reactions is confirmed by NMR spectroscopy (proton HNMR or Carbon CNMR) analysis. Where possible, yield and degree of conversion are calculated through NMR spectra peaks integration. All the chemical reactions employed are optimized, modifying parameters and quantities of reagents, with the aim of obtain the highest values of degree of functionalization possible. To obtain the hydrogel material, the two constitutive components are then mixed in Phosphate Saline Buffer (PBS), an aqueous solution at physiological pH. The concentration of HA portion should be mixed in the solution with the PEG portion has been identified as the critical overlap chain concentration (C*), to maximize the area of interaction between chains. This value is found through a stress flow step rheological experiment from 0,1 to 2 Pa at constant temperature of 2°C, with a 40-mm cone geometry. Here the intrinsic viscosity of the polymer () is provided upon different concentrations measurements and, consequently, following the theoretical model showed below (figure 1), the C* is obtained as its inverse, at the point of the curve where a change in slope is observed. Then, starting from this base concentration, several molar and volume ratios between HA-PBA and PEG-Maltose are tested to find a proper gel viscosity. The extent of viscosity is then verified via Flick-Test. This work provides an optimized method for the synthesis of this brand-new scaffold material, to be further inspected through mechanical and physical characterization and then in vitro/in vivo tests.
Lo sviluppo di un materiale idrogel intelligente, auto-riparante e dinamico, offre potenzialmente una promettente possibilità nella progettazione e realizzazione di scaffold per la rigenerazione di tessuti biologici. Questo nuovo tipo di materiale polimerico versatile qui formulato combina le proprietà risultanti dal Polietilene Glicole (PEG) con quelle conferite dal legame dinamico covalente ottenuto in presenza di Acido Fenilboronico (PBA). Nel campo della rigenerazione dei tessuti, molti esempi di idrogel a base di PEG e PBA sono disponibili, grazie alle caratteristiche dei suddetti componenti: biocompatibilità, versatilità e stabilità meccanica per quanto riguarda il PEG e dinamicità e sensibilità agli stimoli per quanto riguarda il PBA. Nonostante ciò, non sono ancora stati condotti studi riguardo alla progettazione di un singolo materiale che comprenda tutte le sopra citate caratteristiche in esso, aprendo un’interessante finestra di ricerca. Come valida alternativa ai già affermati idrogel in tale impiego, per risultare competitivo, il nuovo combinato prodotto dovrà quindi risultare biocompatibile, auto-riparante, dotato di legami dinamici e in grado quindi di far fronte ad un’ampia varietà di situazioni individualmente, senza necessità di reperire ulteriore materiale. Lo scopo di questa ricerca è quella di presentare una via facile e immediata per la sintesi lo sviluppo di questo innovativo idrogel, basato su quattro componenti: Polietilene glicole (PEG), Maltosio, Acido Ialuronico (HA) e Acido Fenilboronico (PBA). Una volta sintetizzate le due principali catene polimeriche (PEG-Maltosio e HA-PBA), queste, mescolate in una soluzione acquosa, daranno vita all’idrogel; precisamente si otterrà la formazione di legami covalenti dinamici tramite una reazione di reticolazione tra i terminali delle due catene (Maltosio e PBA). Innanzitutto, del PEG a otto rami viene funzionalizzato con gruppi Tosile in una reazione con p-Toluenesulfonil Cloruro; successivamente, i gruppi Tosile verranno a loro volta sostituiti da gruppi Azoturo in una reazione con Azoturo di Sodio. Parallelamente, il Maltosio viene preparato tramite una reazione a tre step: nel il primo step, il Maltosio puro viene funzionalizzato con gruppi Acetossi al posto dei gruppi Ossidrile, dopodiché il prodotto viene fatto reagire con Acido Propargilico in modo da aggiungere alla molecola un triplo legame; lo step finale consiste nella ricostituzione dei gruppi Ossidrile a discapito dei gruppi Acetossi rimanenti. La coniugazione finale di PEG-Maltosio è ottenuta attraverso una reazione di Click-Chemistry tra il triplo legame appartenente al Maltosio modificato e il gruppo Azoturo appartenente al PEG modificato. Simultaneamente, l’Acido Ialuronico viene modificato con l’aggiunta di Acido Fenilboronico in una reazione diretta tra i due. La riuscita delle reazioni viene confermata attraverso l’utilizzo di spettroscopia NMR (sia protonica HNMR che carbonica CNMR). Dove possibile, la resa e il grado di conversione ottenuto nelle funzionalizzazioni è calcolato attraverso integrazione dei picchi dei vari spettri. Tutte le suddette reazioni sono ottimizzate, tramite modifiche apportate a quantità e parametri di processo, con l’obiettivo di raggiungere il più alto valore di grado di funzionalizzazione possibile. Per ottenere il gel polimerico, le due componenti ricavate dalle precedenti serie di reazioni sono state mischiate in Buffer Fosfato Salino (PBS), soluzione acquosa a pH fisiologico. La concentrazione di partenza di HA nella soluzione è stata individuata nella concentrazione critica di sovrapposizione delle catene (C*), in modo da massimizzare l’area di contatto tra le componenti. Questo valore è stato ottenuto tramite un esperimento reologico di flusso a rampa di stress, da 0,1 a 2 Pa, a temperatura costante di 2°C, con geometria a cono di 40 mm. Grazie a diverse misurazioni su diverse concentrazioni, si è trovata così la viscosità intrinseca del materiale; in questo modo, seguendo il modello teorico sotto mostrato (figura 1), dal suo inverso è stata ricavata la C*. Partendo dalla concentrazione trovata come riferimento, diverse miscelazioni sono state fatte con diversi rapporti molari e volumici tra HA-PBA e PEG-Maltosio con lo scopo di trovare la viscosità desiderata. Le varie viscosità sono testate poi con attraverso l’utilizzo di un Flick-Test. Questo studio fornisce un ottimizzato metodo preliminare riguardante la sintesi di un nuovo materiale implicabile nella realizzazione di scaffold, previa caratterizzazione meccanica seguite da esperimenti in vitro/in vivo.
Dynamic, biocompatible, self-healing HA-PEG based hydrogel composites for tissue engineering applications
FERRARI, MATTEO
2016/2017
Abstract
The development of a smart self-healing dynamic hydrogel may be of extreme importance in the tissue engineering filed, as well in the design and realization of versatile scaffolds for tissue regeneration. In this work, the development of a new system based on Hyaluronic acid (HA) and Polyethylene glycol (PEG), with the fundamental employment of the Phenylboronicacid (PBA), is thought to be inserted in this scientific panorama. This brand-new polymeric material combines the properties of Polyethylene glycol with the properties given by the dynamic covalent bond created by the presence of Phenylboronicacid. Several examples of hydrogels employing PEG or PBA, in tissue regeneration, have already been studied due to their properties: biocompatibility, versatility and mechanical stability of PEG as well as dynamicity and multi-responsiveness of PBA dynamic covalent bond. However, no studies have been conducted yet about the possibility of conjugate those properties in a single hydrogel material, suggesting a valid alternative to be investigated. To be a performant material and a valid alternative, this hydrogel should meet the already mentioned properties of PEG and PBA, giving life to a biocompatible, self-healing, stimuli-responsive, dynamic material, able to face alone a wide range of different applicative solutions. The aim of this work is to provide an easy and fast method for the synthesis and development of this innovative hydrogel, based on four main elements: Polyethylene glycol (PEG), Maltose, Hyaluronic Acid (HA) and Phenylboronicacid (PBA). Once the synthesis of the two main chains (PEG-Maltose and HA-PBA) will be completed, upon mixing in an aqueous environment, the two extremities (PBA and Maltose) will crosslink generating the so called dynamic covalent bond, thus the hydrogel. First eight arms- PEG is functionalized with a two-step reaction: Tosyl groups in a reaction with p-Toluenesulfonyl chloride and then Tosyl groups substituted by Azide groups in a reaction with Sodium Azide. In parallel, a three-step reaction is carried on preparing Maltose: in the first step, pure Maltose is functionalized with Acetoxy groups for Hydroxyl groups, in the second step, the compound reacts with Propargyl Alcohol to add a triple bond terminal to the molecule and then, in the final step, the remaining Acetyl groups are removed in favour of Hydroxyl groups again. PEG-Maltose chain is readily realized via Click-Chemistry reaction between the triple bond of the modified Maltose and the Azide groups of the previously modified PEG. Simultaneously, Hyaluronic Acid is directly modified with Phenylboronicacid in a one reaction process. The outcome of all the reactions is confirmed by NMR spectroscopy (proton HNMR or Carbon CNMR) analysis. Where possible, yield and degree of conversion are calculated through NMR spectra peaks integration. All the chemical reactions employed are optimized, modifying parameters and quantities of reagents, with the aim of obtain the highest values of degree of functionalization possible. To obtain the hydrogel material, the two constitutive components are then mixed in Phosphate Saline Buffer (PBS), an aqueous solution at physiological pH. The concentration of HA portion should be mixed in the solution with the PEG portion has been identified as the critical overlap chain concentration (C*), to maximize the area of interaction between chains. This value is found through a stress flow step rheological experiment from 0,1 to 2 Pa at constant temperature of 2°C, with a 40-mm cone geometry. Here the intrinsic viscosity of the polymer () is provided upon different concentrations measurements and, consequently, following the theoretical model showed below (figure 1), the C* is obtained as its inverse, at the point of the curve where a change in slope is observed. Then, starting from this base concentration, several molar and volume ratios between HA-PBA and PEG-Maltose are tested to find a proper gel viscosity. The extent of viscosity is then verified via Flick-Test. This work provides an optimized method for the synthesis of this brand-new scaffold material, to be further inspected through mechanical and physical characterization and then in vitro/in vivo tests.File | Dimensione | Formato | |
---|---|---|---|
Thesis Matteo Ferrari.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Testo della tesi- Matteo Ferrari 837233
Dimensione
9.95 MB
Formato
Adobe PDF
|
9.95 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/135967