Acoustophoretic printing is an innovative approach to droplets generation. It is conceptually similar to dripping, but employs an acoustic field to add an equivalent acoustic acceleration that allows to control the droplet volume and detachment, at the same time extending the range of material viscosities and surface tensions of ink-jet printing, enabling controlled droplet deposition of Newtonian and non-Newtonian fluids. In the first part of the thesis project, an analysis of the deposition error has been carried out: the outcome of this study allowed to choose the best conditions for achieving the highest resolution in two and three-dimensional printing. In the second part of the project, starting from the information related to ink-jet and direct ink writing technologies available in the scientific literature, evaporative printing was analyzed and adapted to the unique features of an in-house built acoustophoretic printer, whose components were designed and integrated in an organic acoustophoretic platform. In particular, an in-house built, programmable signal generator was integrated with a pressure controller and a stage to control the acoustophoretic printer entirely through G-CODE. By combining the outcomes of both these tasks, it was finally possible to achieve 2.5 and 3D acoustophoretic evaporative printing of polyethylene glycol, and thus paving the way for plenty of applications for this innovative technology, from bio-printing to food industry.
La stampa acustoforetica rappresenta un approccio innovativo alla generazione e deposizione di gocce. Pur essendo concettualmente simile alla stampa ink-jet, l’utilizzo di un campo acustico ne differenzia in maniera radicale il range di materiali depositabili, rendendo possibile la deposizione controllata di fluidi Newtoniani e non-Newtoniani. La prima parte di questo progetto di tesi è consistito in un’analisi dell’errore di deposizione, che ha permesso di trovare le migliori condizioni di stampa per massimizzare la risoluzione, sia per stampa 2D che 3D. Nella seconda parte del progetto è stato considerato l’utilizzo della stampa evaporativa per il nuovo setup acustoforetico, di cui parte dei componenti è stata realizzata ex-novo per costruire una piattaforma integrata di stampa. In particolare, ci si è concentrati sulla integrazione di un nuovo generatore di segnali, poco costoso e interamente programmabile, con un nuovo controller per la pressione ed uno stage, ottenendo così un nuovo device per la stampa acustoforetica che permette di essere interamente controllato tramite G-CODE. Combinando lo studio dell’errore al nuovo dispositivo di stampa, è stato quindi possibile ottenere stampa 2.5 e 3D di polietilene glicole, muovendo i primi passi per future applicazioni di questa tecnologia con potenziali ricadute in campi diversissimi: da quello biomedicale all’industria del cibo.
Droplet-based acoustophoretic printing : ink deposition and printing system control
SILLANI, FRANCESCO
2016/2017
Abstract
Acoustophoretic printing is an innovative approach to droplets generation. It is conceptually similar to dripping, but employs an acoustic field to add an equivalent acoustic acceleration that allows to control the droplet volume and detachment, at the same time extending the range of material viscosities and surface tensions of ink-jet printing, enabling controlled droplet deposition of Newtonian and non-Newtonian fluids. In the first part of the thesis project, an analysis of the deposition error has been carried out: the outcome of this study allowed to choose the best conditions for achieving the highest resolution in two and three-dimensional printing. In the second part of the project, starting from the information related to ink-jet and direct ink writing technologies available in the scientific literature, evaporative printing was analyzed and adapted to the unique features of an in-house built acoustophoretic printer, whose components were designed and integrated in an organic acoustophoretic platform. In particular, an in-house built, programmable signal generator was integrated with a pressure controller and a stage to control the acoustophoretic printer entirely through G-CODE. By combining the outcomes of both these tasks, it was finally possible to achieve 2.5 and 3D acoustophoretic evaporative printing of polyethylene glycol, and thus paving the way for plenty of applications for this innovative technology, from bio-printing to food industry.File | Dimensione | Formato | |
---|---|---|---|
2017_09_Sillani.pdf
non accessibile
Descrizione: Thesis text
Dimensione
15.67 MB
Formato
Adobe PDF
|
15.67 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/135972