Nowadays the energy production is moving towards a more sustainable ways to satisfy the increasing attention to environmental issues. Renewable energy sources have been establishing themselves as a valid alternative to the classic fossil-fuel oriented energy production; in this context, an interest in Microgrids design and control is growing more and more. In fact, the microgrid concept represents an appealing alternative for overcoming the challenges of integrating Distributed Energy Resource units, including renewable energy sources, in the current power systems. A microgrid can work either connected to the main grid, in grid-connected mode, or can separate from it and work alone, in islanded-mode. Major issues occur exactly in this case; the stochastic nature of both renewable sources and loads could create unbalances between the total generated power and the absorbed one. While in the grid-connected mode any power mismatch is compensated by a power exchange with the main grid, unbalance in islanded mode has a considerable impact on the network electrical variable, which can significantly deviate from their nominal value. The main objective of this work is to design a centralized controller for the coordination of the energy storage systems, interfaced to the microgrid through voltage controlled voltage source inverters. The control objective is to restore the frequency of the microgrid to its nominal value of 50 Hz and to keep, as close as possible, the nodal voltage magnitudes to a nominal value of 400 V, after a renewable source or load disturbance. Moreover, a power distribution logic among the storage systems is implemented, in order to take into account their state of energy. To this purpose, a hierarchical control architecture has been devised. First a voltage control in synchronous axis is developed for the single controller, then a primary control level, based on the largely studied Droop Control, is designed. This control strategy relies on a decentralized control action that promptly minimizes the power unbalances in the microgrid, by varying the inverter output voltage magnitude and frequency values. A secondary control level instead has the function to both restore voltages and frequency to their nominal values and efficiently distribute the generated and absorbed powers among the energy storage systems. The designed secondary layer is composed by two control action: one provided by Proportional-Integral with Smith Predictor controllers, which ensure the convergence of the microgrid frequency to its nominal value; and one provided by a multi-objective control strategy, that at each iteration defines the optimal output voltage magnitude of each converter. The proposed secondary control level, besides improving the performances with respect to those provided by the primary control one alone, allows the better exploiting of the energy of each storage system. The results show the performances of the whole hierarchical control structure, when it is tested over a pre-defined powers profile of the microgrid.
Al giorno d’oggi, la produzione di energia si sta spostando verso nuovi modi più sostenibili di soddisfare una crescente attenzione per i problemi ambientali. Le fonti di energia rinnovabile stanno diventando una valida alternativa alla classica produzione di energia, incentrata sui combustibili fossili. In questo contesto, un interesse nel design e controllo delle Microreti sta crescendo sempre più. Infatti, la microrete rappresenta un’alternativa interessante per superare le difficoltà nell’ integrare fonti di energia distribuita, incluse le fonti di energia rinnovabile, negli atuali sistemi di potenza. Una microrete può lavorare o connessa alla rete principale, in modalità rete-connessa, o può separarsi da essa e funzionare da sola, in isola. I problemi principali avvengono esattamente in questo caso; la natura aleatoria delle fonti rinnovabili e dei carichi può creare squilibri fra la potenza generata totale e quella assorbita. Mentre, quando la microrete è in modalità rete-connessa, squilibri di potenza possono essere risolti scambiando potenza con la rete principale, in isola, ciò non accade e gli squilibri di potenza possono far deviare la frequenza di rete e la tensione dei nodi dai loror valori nominali. L’obiettivo principale di questo elaborato e progettare un controllo centralizzato per il coordinamento dei sistemi di immagazzinamento di energia, interfacciati alla microrete attraverso convertitori controllati in tensione. Inoltre, una strategia per la distribuzione delle potenze fra le unità di immagazzinamento è implementata, in modo da tener conto del loro stato di energia. Il compito principale del controllo è quello di ristabilire la frequenza di microrete al valore di 50 HZ e delle tensioni dei nodi a 400 V, dopo disturbi dovuti alle fonti di energia rinnovabile o dei carichi. A questo proposito è stato ideato un controllo gerarchico. Prima un controllo di tensione su assi sincronizzati e in seguito un controllo primario, basato sul Droop Control, sono stati sviluppati. Questa strategia di controllo è implementata attraverso un controllo decentralizzato che immediatamente varia il valore della frequenza e della tensione di uscita dei convertitori, a seconda degli squilibri di potenza misurati. Un livello secondario ha invece la funzione di riportare la frequenza e le tensioni ai loro valori nominali e, allo stesso tempo, di distribuire la potenza attiva assorbita o generata dai convertitori, a seconda dello stato di carica delle batterie. Il livello secondario progettato è composto da due zioni di controllo: una fornita da regolatori Proporzionali-Integrali con Predittore di Smith, che assicurano la convergenza della frequenza della microrete al suo valore nominale; ed una fornita da un controllo ottimo che ad ogni iterazione definisce i valori ottimi di tensione e frequenza di uscita per ogni convertitore. Il controllo secondario proposto, oltre a migliorare le prestazioni rispetto ad un solo controllo primario, permette ti sfruttare al meglio l’ energia di ciascuno dei sistemi di immagazzinamento. I risultati mostrano il comportamento dell’ intera struttura gerarchica di controllo, quando è testata con un profilo di potenze predefinito.
Voltage and frequency secondary control of islanded low voltage inverter-based microgrid
MORENA, DAVIDE
2016/2017
Abstract
Nowadays the energy production is moving towards a more sustainable ways to satisfy the increasing attention to environmental issues. Renewable energy sources have been establishing themselves as a valid alternative to the classic fossil-fuel oriented energy production; in this context, an interest in Microgrids design and control is growing more and more. In fact, the microgrid concept represents an appealing alternative for overcoming the challenges of integrating Distributed Energy Resource units, including renewable energy sources, in the current power systems. A microgrid can work either connected to the main grid, in grid-connected mode, or can separate from it and work alone, in islanded-mode. Major issues occur exactly in this case; the stochastic nature of both renewable sources and loads could create unbalances between the total generated power and the absorbed one. While in the grid-connected mode any power mismatch is compensated by a power exchange with the main grid, unbalance in islanded mode has a considerable impact on the network electrical variable, which can significantly deviate from their nominal value. The main objective of this work is to design a centralized controller for the coordination of the energy storage systems, interfaced to the microgrid through voltage controlled voltage source inverters. The control objective is to restore the frequency of the microgrid to its nominal value of 50 Hz and to keep, as close as possible, the nodal voltage magnitudes to a nominal value of 400 V, after a renewable source or load disturbance. Moreover, a power distribution logic among the storage systems is implemented, in order to take into account their state of energy. To this purpose, a hierarchical control architecture has been devised. First a voltage control in synchronous axis is developed for the single controller, then a primary control level, based on the largely studied Droop Control, is designed. This control strategy relies on a decentralized control action that promptly minimizes the power unbalances in the microgrid, by varying the inverter output voltage magnitude and frequency values. A secondary control level instead has the function to both restore voltages and frequency to their nominal values and efficiently distribute the generated and absorbed powers among the energy storage systems. The designed secondary layer is composed by two control action: one provided by Proportional-Integral with Smith Predictor controllers, which ensure the convergence of the microgrid frequency to its nominal value; and one provided by a multi-objective control strategy, that at each iteration defines the optimal output voltage magnitude of each converter. The proposed secondary control level, besides improving the performances with respect to those provided by the primary control one alone, allows the better exploiting of the energy of each storage system. The results show the performances of the whole hierarchical control structure, when it is tested over a pre-defined powers profile of the microgrid.File | Dimensione | Formato | |
---|---|---|---|
2017_10_Morena.pdf
accessibile in internet per tutti
Descrizione: Testo della tesi
Dimensione
8.1 MB
Formato
Adobe PDF
|
8.1 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/136002