Flat reinforced concrete slabs are widely used in different structures, such as underground or multi-storey car parks, malls, hospitals, and generally whenever large spans are required. The thickness of the slab is usually determined by serviceability limit states (limitation of the displacements) and by the requirements concerning punching strength. Both these conditions have been extensively studied in the past with reference to ordinary conditions; one of the most critical conditions for flat slabs, however, is fire, which brings in a redistribution of internal actions as a result of thermal expansion and curvature, as well as the degradation of the mechanical properties of the materials. The synergy of these phenomena can be very dangerous, as the loss of stiffness and bearing capacity of the structure could be accompanied by a significant increase of the internal actions. An increase of the axial forces in the columns, following the aforementioned redistribution, leads to a sizeable increase of the shear forces close to the slab-column connection, thus increasing the risk of a brittle punching failure. The purpose of this thesis is to validate a model for the evaluation of the punching resistance in fire conditions. This model is an extension of the Critical Shear Crack Theory developed at the EPFL of Lausanne, and allows to properly take into account the effects of high temperatures (thermal curvature as well as loss of stiffness and bearing capacity). The validation was carried out by examining several experimental campaigns, carried out at various laboratories with different test modalities. The comparisons show a good agreement between numerical and experimental results, despite the many uncertainties that characterize the problem (load configuration and geometry of the specimens, to cite only the more relevant). Some additional considerations are developed in order to adapt the original assumptions of the Critical Shear Crack Theory (axisymmetric geometry and load configuration) to square specimens.
Le piastre in calcestruzzo armato su pilastri rappresentano una tipologia costruttiva ampiamente diffusa, in particolare nelle strutture quali parcheggi sotterranei o multipiano, centri commerciali, ospedali e in generale in strutture in cui si necessita di ampie luci ed elevata efficienza strutturale. Lo spessore delle piastre è in genere determinato dagli stati limite di servizio (spostamenti) e dallo stato limite ultimo per punzonamento. Tali condizioni sono state ampiamente studiate in passato con riferimento alle condizioni ordinarie; una delle condizioni più gravose per tali strutture, tuttavia, è rappresentata dall’incendio, che genera nella piastra una ridistribuzione delle azioni interne come effetto dell’instaurarsi di dilatazioni e curvature di natura termica e del degrado delle proprietà meccaniche dei materiali. La sinergia di tali fenomeni può essere molto pericolosa, in quanto alla perdita di rigidezza e capacità portante della struttura potrebbe accompagnarsi un aumento dello stato di sforzo nella stessa. L’incremento dell’azione assiale nei pilastri a seguito della ridistribuzione delle azioni interne, per esempio, porta ad un aumento sensibile delle azioni taglianti in prossimità dei nodi piastra-pilastro, con conseguente rischio di rottura fragile per punzonamento. Lo scopo della presente tesi è la validazione di un modello volto alla valutazione del carico ultimo per punzonamento in condizioni di incendio. Tale modello è un’estensione della Critical Shear Crack Theory elaborata presso l’EPFL di Losanna, e consente di trattare opportunamente gli effetti delle alte temperature (curvatura termica e perdita di rigidezza e capacità portante). Per la validazione sono state analizzate diverse campagne sperimentali, condotte presso vari laboratori con diverse modalità di prova. Il confronto fra i risultati numerici e sperimentali mostra un buon accordo, nonostante le numerose incertezze che affliggono il problema, su tutte il metodo di applicazione del carico e la geometria dei provini. Su tali parametri vengono svolte alcune considerazioni aggiuntive con lo scopo di adattare l’impostazione originale della Critical Shear Crack Theory, con condizioni di carico e vincolo assialsimmetriche, a campioni a geometria quadrata.
Studio sul punzonamento di piastre in calcestruzzo armato esposte ad incendio
PALLAVICINI, GIACOMO
2016/2017
Abstract
Flat reinforced concrete slabs are widely used in different structures, such as underground or multi-storey car parks, malls, hospitals, and generally whenever large spans are required. The thickness of the slab is usually determined by serviceability limit states (limitation of the displacements) and by the requirements concerning punching strength. Both these conditions have been extensively studied in the past with reference to ordinary conditions; one of the most critical conditions for flat slabs, however, is fire, which brings in a redistribution of internal actions as a result of thermal expansion and curvature, as well as the degradation of the mechanical properties of the materials. The synergy of these phenomena can be very dangerous, as the loss of stiffness and bearing capacity of the structure could be accompanied by a significant increase of the internal actions. An increase of the axial forces in the columns, following the aforementioned redistribution, leads to a sizeable increase of the shear forces close to the slab-column connection, thus increasing the risk of a brittle punching failure. The purpose of this thesis is to validate a model for the evaluation of the punching resistance in fire conditions. This model is an extension of the Critical Shear Crack Theory developed at the EPFL of Lausanne, and allows to properly take into account the effects of high temperatures (thermal curvature as well as loss of stiffness and bearing capacity). The validation was carried out by examining several experimental campaigns, carried out at various laboratories with different test modalities. The comparisons show a good agreement between numerical and experimental results, despite the many uncertainties that characterize the problem (load configuration and geometry of the specimens, to cite only the more relevant). Some additional considerations are developed in order to adapt the original assumptions of the Critical Shear Crack Theory (axisymmetric geometry and load configuration) to square specimens.File | Dimensione | Formato | |
---|---|---|---|
2017_10_Pallavicini.pdf
non accessibile
Descrizione: testo della tesi
Dimensione
4.42 MB
Formato
Adobe PDF
|
4.42 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/136293