Cardiovascular diseases are the main cause of death and disability both in Italy and in the rest of occidental world and they are increasing rapidly even in developing countries [1]. Most of these diseases are associated with atherosclerosis, a pathology that consists in the deposition on the walls of the blood vessels of substances such as lipids and cholesterol; vascular narrowing obstructs normal blood flow until it completely inhibits nutrient supply downstream of the occlusion or cause the formation of thrombus or clot that will obstruct the lumen in subsequent districts [2]. For what concern the treatment of obstructive pathologies, historically the main approach was to create an artificial bypass for the reconnection of the upstream and the downstream parts of the obstruction. With the discovery of the mini-invasive surgery it was developed another technique more efficient that was able to restore the original dimension of the lumen, known as percutaneous transluminal coronary angioplasty or PTCA; however, its limitation resides in the high percentage of restenosis that interest the 30-50% of the surgical interventions [3,34]. In order to solve this problem, tubular scaffolds made of a metallic mesh structure called stents were introduced: they were expanded inside the artery in order to keep the lumen open. The stent can be used in conjunction with the PTCA or can be manufactured with auto-expandable material that allow to use a physical stimulus, usually the thermal one without the balloon [3]. Even if the implantation of cardiovascular stent has the advantage to reduce the stenosis, this problem can’t be completely eliminated: the return of the vase back to the origin, as well as the risk of thrombosis, remain open issues [3,5]. Another problem is that this kind of device remains in the implant site even when it isn’t necessary anymore. In order to overcome this problem, the most interesting solution is to use a biodegradable stent: the most important principle of such a device consists in balancing the degradation rate with the mechanical integrity during the permanence inside the body, in order to guarantee a physical support until the complete remodelling and the healing of the vase. Numerous materials were studied during the years, with this aim, including iron and magnesium [6]. In particular, magnesium is a metal characterized by good biocompatibility that makes it interesting for biomedical applications; however, magnesium is characterized by a very low structural strength and by an inadequate degradation rate. Because of those reasons, magnesium is usually used in the form of alloy [7–9]. Over the years, different kind of magnesium alloys have been realized for different fields of application, such as AZ91, AM60 and AZ31, that can be selected like good candidates for stent. In particular, the AZ31 alloy guarantees a particularly good compromise between the mechanical properties and the biocompatibility as well as being easily extrudable. Despite of the use of alloy, the rapid corrosion rate remains the fundamental critical issue: the detachment of corrosion products causes the local embrittlement of the material with probable formation of cracks [7–11]. A valid option to solve this problem is the use of a surface coating treatment: the two main categories are the conversion coatings, like electrophoretic deposition and micro arc oxidation (MAO), and coatings for deposition such as dipping and deposition by air spray. Micro arc oxidation (MAO) is a surface modification that converts the outer layer of samples thanks to the application of an electric field: the final result is a microporous surface with physical characteristics similar to that of a ceramic material, made of magnesium oxide, inside which chemical species, present inside the electrolytic bath, can be incorporated [12,13]. This technique is very advantageous because it improves the corrosion resistance of the material, it has low cost, it’s not polluting, it’s simple to realize and doesn’t require a particular preparation for the sample [14,15]. In order to obtain a good coating with MAO, it’s necessary to consider different kind of factors like electrolytic solution, current density, voltage and processing time [8]. These parameters, according to literature, are not uniquely defined and they are subjected to a wide range of variations. Another technique recently discovered for the generation of a protective film on magnesium is the hydrothermal treatment. This kind of process has numerous advantages like the low temperatures of process (100/200°C), high purity, high coating thickness, simplicity, eco-compatibility, good adhesion and can be done on 3D structures with complex geometries [16,17]. The operation's principle of the hydrothermal treatment involves the insertion of a sample in a solution in stagnant condition. The procedure is conducted with a fixed temperature in a determined time (hours) in order to obtain the desired surface modification. This treatment, as seen for MAO, leads to different results depending on the process parameters such as working fluid, temperature ramp, working temperature and treatment time. The aim of this work is to analyse and to optimize the principal parameters of the MAO process in order to combine it with a hydrothermal treatment to obtain a thin, compact and protective coating on AZ31 magnesium alloy samples suitable for cardiovascular applications. The specimens will be evaluated in term of morphology, thickness and corrosion. Finally, a preliminary biological characterization will be done to evaluate the possible release of toxic products for the cellular growth by performing an indirect cytotoxicity test in vitro. In this test, samples obtained will be compared to the ones uncoated.
Le malattie cardiovascolari sono la principale causa di morte e disabilità sia in Italia che nel resto del mondo occidentale e stanno aumentando rapidamente anche nei paesi in via di sviluppo [1]. Uno dei principali eventi scatenanti delle malattie cardiovascolari è l’aterosclerosi, evento patologico che consiste nel deposito sulle pareti dei vasi sanguigni di sostanze quali lipidi e colesterolo; il restringimento del lume del vaso ostacola il normale flusso di sangue fino a impedire completamente l’apporto di nutrienti a valle dell’occlusione o causa la formazione di trombi o coaguli che andranno a ostruire il lume nei tratti successivi [2]. Per il trattamento delle patologie ostruttive, storicamente l’approccio considerato era creare un bypass artificiale che ricongiungesse la parte a monte con la parte a valle dell’ostruzione. Con l’avvento della chirurgia mininvasiva fu sviluppata un’altra tecnica molto più efficiente per ripristinare la pervietà del vaso nota come angioplastica coronarica percutanea transluminare o PTCA; la limitazione di questa metodologia risiede nell’elevata percentuale di restenosi, fenomeno che interessa il 30-50% degli interventi [3,4]. Per ovviare a questa problematica sono stati sviluppati scaffold tubolari costituiti da una struttura metallica a maglie che vengono inseriti ed espansi all’interno delle arterie per mantenerne aperto il lume, noti come stent. Uno stent può essere utilizzato in concomitanza con la PTCA oppure essere fabbricato con materiale auto-espandibile che consente di utilizzare uno stimolo fisico, solitamente termico, rendendo superflua la presenza del palloncino [3]. Nonostante l’impianto di uno stent cardiovascolare abbia il vantaggio di ridurre il rischio di restenosi rispetto alla PTCA da sola, questo non è comunque in grado di eliminarlo del tutto: il ritorno del vaso allo stato originale, così come il rischio di trombosi, rimangono problematiche ancora aperte [3,5]. Un’ulteriore problematica di tali dispositivi è che permangono nel sito d’impianto per un tempo maggiore di quello effettivamente necessario. Per ovviare a tale problema la soluzione più promette è quella di utilizzare uno stent in materiale biodegradabile: il principio di base di un dispositivo di questo tipo consiste nel bilanciare la velocità di degradazione con l’integrità meccanica durante l’impianto, garantendo un supporto fisico fino al completo rimodellamento e guarigione del vaso. Con questo obiettivo nel corso degli anni sono stati studiati numerosi materiali, fra cui ad esempio ferro e magnesio [6]. In particolare, il magnesio è un metallo caratterizzato da una buona biocompatibilità che lo rende interessante per applicazioni in ambito biomedicale; tuttavia questo materiale è altresì caratterizzato da una bassa resistenza strutturale e da una velocità di degradazione non adeguata e per questo motivo viene quasi esclusivamente utilizzato sotto forma di lega [7–9]. Nel corso degli anni sono state realizzate diverse leghe di magnesio con diverse composizioni e caratteristiche in base al tipo di applicazioni; ad esempio la AZ91, la AM60 e la AZ31 sono leghe caratterizzate da una percentuale decrescente di alluminio e selezionabili come possibili materiali candidati per la realizzazione di stent. In particolare, la lega AZ31 garantisce un compromesso particolarmente favorevole tra le proprietà meccaniche e il comportamento a corrosione, oltre che a essere facilmente estrudibile. Malgrado l’utilizzo in lega, la velocità di corrosione rimane la criticità fondamentale, soprattutto perché il distacco dei prodotti di corrosione provoca l’infragilimento locale del materiale con probabile formazione di cricche [7–11]. Una valida opzione per ovviare al problema dell’eccessiva degradazione è l’utilizzo di trattamenti di rivestimento superficiale che possono essere divisi in due categorie principali: i rivestimenti per conversione, come ad esempio la deposizione elettroforetica e la micro arc oxidation (MAO), ed i rivestimenti per deposizione, come il dipping e la deposizione tramite air spray. La micro arc oxidation (MAO) è una modifica superficiale che converte lo strato esterno del campione grazie all’applicazione di un campo elettrico: il risultato finale è una superficie microporosa, con caratteristiche fisiche simili a quelle di un materiale ceramico, costituita da ossido di magnesio, all’interno della quale possono essere inglobate specie chimiche presenti nel bagno elettrolitico [12,13]. Questa tecnica risulta molto vantaggiosa in quanto, oltre a migliorare la resistenza a corrosione del materiale, ha costi contenuti, non è inquinante, è semplice da realizzare e non richiede una particolare preparazione del campione [14,15]. Per ottenere un buon rivestimento con la tecnica MAO è necessario considerare diversi fattori tra cui i cui principali sono soluzione elettrolitica, densità di corrente, voltaggio e tempo di trattamento [8]. Come emerge da un’analisi della letteratura questi parametri non sono ancora stati definiti in maniera univoca ma sono soggetti ad ampi intervalli di variazione. Un’altra tecnica emersa negli ultimi anni e in fase preliminare di studio per la generazione di un film protettivo su un substrato di magnesio è il trattamento idrotermico. Questo trattamento possiede numerosi vantaggi tra cui basse temperature di lavoro (100/200 °C), alta purezza, elevati spessori di rivestimento, semplicità, ecocompatibilità, buona adesione e può essere effettuato su strutture 3D con geometrie complesse [16,17]. Il principio di funzionamento del trattamento idrotermico prevede l’inserimento di un campione all’interno di una soluzione in condizioni stagne, il tutto portato ad una temperatura fissata per un determinato intervallo di tempo (nell’ordine delle ore) in modo da ottenere la modifica superficiale desiderata. Come visto per la MAO, anche il trattamento idrotermico fornisce risultati differenti in dipendenza dai parametri di processo quali liquido di lavoro, rampa di temperatura, temperatura di lavoro e tempo di trattamento. Lo scopo del presente lavoro di tesi è l’analisi e l’ottimizzazione dei parametri principali del processo MAO in modo da accoppiarlo ad un trattamento idrotermico al fine di ottenere un rivestimento sottile, compatto ed altamente protettivo su dei provini di lega di magnesio AZ31 per un eventuale utilizzo in applicazioni cardiovascolari. I campioni verranno valutati in termini di morfologia, spessore e resistenza a corrosione. Verrà inoltre eseguita una caratterizzazione biologica preliminare per valutare l’eventuale rilascio di prodotti tossici per la crescita cellulare eseguendo un test di citotossicità indiretta in vitro. I campioni ottenuti verranno confrontati fra loro e con provini in lega di magnesio AZ31 non rivestiti.
Trattamenti di modifica superficiale per rallentare la dissoluzione della lega di magnesio AZ31 in applicazioni cardiovascolari
PACELLI, ELISABETTA;SAVINO, FLAVIO
2016/2017
Abstract
Cardiovascular diseases are the main cause of death and disability both in Italy and in the rest of occidental world and they are increasing rapidly even in developing countries [1]. Most of these diseases are associated with atherosclerosis, a pathology that consists in the deposition on the walls of the blood vessels of substances such as lipids and cholesterol; vascular narrowing obstructs normal blood flow until it completely inhibits nutrient supply downstream of the occlusion or cause the formation of thrombus or clot that will obstruct the lumen in subsequent districts [2]. For what concern the treatment of obstructive pathologies, historically the main approach was to create an artificial bypass for the reconnection of the upstream and the downstream parts of the obstruction. With the discovery of the mini-invasive surgery it was developed another technique more efficient that was able to restore the original dimension of the lumen, known as percutaneous transluminal coronary angioplasty or PTCA; however, its limitation resides in the high percentage of restenosis that interest the 30-50% of the surgical interventions [3,34]. In order to solve this problem, tubular scaffolds made of a metallic mesh structure called stents were introduced: they were expanded inside the artery in order to keep the lumen open. The stent can be used in conjunction with the PTCA or can be manufactured with auto-expandable material that allow to use a physical stimulus, usually the thermal one without the balloon [3]. Even if the implantation of cardiovascular stent has the advantage to reduce the stenosis, this problem can’t be completely eliminated: the return of the vase back to the origin, as well as the risk of thrombosis, remain open issues [3,5]. Another problem is that this kind of device remains in the implant site even when it isn’t necessary anymore. In order to overcome this problem, the most interesting solution is to use a biodegradable stent: the most important principle of such a device consists in balancing the degradation rate with the mechanical integrity during the permanence inside the body, in order to guarantee a physical support until the complete remodelling and the healing of the vase. Numerous materials were studied during the years, with this aim, including iron and magnesium [6]. In particular, magnesium is a metal characterized by good biocompatibility that makes it interesting for biomedical applications; however, magnesium is characterized by a very low structural strength and by an inadequate degradation rate. Because of those reasons, magnesium is usually used in the form of alloy [7–9]. Over the years, different kind of magnesium alloys have been realized for different fields of application, such as AZ91, AM60 and AZ31, that can be selected like good candidates for stent. In particular, the AZ31 alloy guarantees a particularly good compromise between the mechanical properties and the biocompatibility as well as being easily extrudable. Despite of the use of alloy, the rapid corrosion rate remains the fundamental critical issue: the detachment of corrosion products causes the local embrittlement of the material with probable formation of cracks [7–11]. A valid option to solve this problem is the use of a surface coating treatment: the two main categories are the conversion coatings, like electrophoretic deposition and micro arc oxidation (MAO), and coatings for deposition such as dipping and deposition by air spray. Micro arc oxidation (MAO) is a surface modification that converts the outer layer of samples thanks to the application of an electric field: the final result is a microporous surface with physical characteristics similar to that of a ceramic material, made of magnesium oxide, inside which chemical species, present inside the electrolytic bath, can be incorporated [12,13]. This technique is very advantageous because it improves the corrosion resistance of the material, it has low cost, it’s not polluting, it’s simple to realize and doesn’t require a particular preparation for the sample [14,15]. In order to obtain a good coating with MAO, it’s necessary to consider different kind of factors like electrolytic solution, current density, voltage and processing time [8]. These parameters, according to literature, are not uniquely defined and they are subjected to a wide range of variations. Another technique recently discovered for the generation of a protective film on magnesium is the hydrothermal treatment. This kind of process has numerous advantages like the low temperatures of process (100/200°C), high purity, high coating thickness, simplicity, eco-compatibility, good adhesion and can be done on 3D structures with complex geometries [16,17]. The operation's principle of the hydrothermal treatment involves the insertion of a sample in a solution in stagnant condition. The procedure is conducted with a fixed temperature in a determined time (hours) in order to obtain the desired surface modification. This treatment, as seen for MAO, leads to different results depending on the process parameters such as working fluid, temperature ramp, working temperature and treatment time. The aim of this work is to analyse and to optimize the principal parameters of the MAO process in order to combine it with a hydrothermal treatment to obtain a thin, compact and protective coating on AZ31 magnesium alloy samples suitable for cardiovascular applications. The specimens will be evaluated in term of morphology, thickness and corrosion. Finally, a preliminary biological characterization will be done to evaluate the possible release of toxic products for the cellular growth by performing an indirect cytotoxicity test in vitro. In this test, samples obtained will be compared to the ones uncoated.File | Dimensione | Formato | |
---|---|---|---|
2017_10_Savino_Pacelli.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
7.07 MB
Formato
Adobe PDF
|
7.07 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/136307