Storage has become the main bottleneck for many emerging industries such as renewable energy, EVs and electric aircrafts. All-solid-state batteries stand as a viable candidate to solve storage problem as they offer a combination of high energy density and intrinsic safety. However, manufacturing intricacy, high cost and low solid electrolyte ionic conductance has shrunk their utilization to merely micro-batteries. Three-dimensional schemes, such as hexagonal trenches in silicon wafer, can multiply the capacity per area of the cell and thus substantially decrease the cost. Atomic layer deposition technique, on the other hand, can produce ultra-thin layers of solid electrolyte and make higher power outputs possible. The present work, which was executed in Infineon Technologies, deals with the feasibility study of three-dimensional all-solid-state battery with ultra-thin layer of electrolyte. The investigation is carried out through both technical and business perspectives. In the technical part, isothermal electrochemical simulation of the battery is presented. Two-dimensional modelling for different geometries and material properties is conducted. Unlike the original design, it was found that for thicknesses of cathode higher than 3µm the specific energy falls even below conventional batteries. The analysis of the concentration profiles unveils that this is due to lack of effective penetration of Li atoms in cathode matrix. As a result, a parametric investigation was done to evaluate overall performance of the battery for vast combinations of thickness and c-rates. The result of this analysis and further literature study revealed that for small thicknesses, three-dimensional all-solid-state battery outperforms state of the art batteries in terms of specific energy, power density, charging c-rate, safety and cycle life. However, cost of manufacturing was found to be 2900 $/kWh which is about 10 to 15 times more than conventional batteries. In the business part, we sought applications in which the benefit provided by the battery outweighed its elevated cost. Drones, smartphone and smart battery case, battery rental and electric vehicles were chosen based on this criterion and unique selling proposition and business model canvas were developed for each of them. Overall, it is concluded that the three-dimensional battery is indeed very promising, however its high cost challenges its commercialization. This problem can be solved by starting from niche markets in order to increase the know-how and also benefit from economy of scale.
L'immagazzinaggio è diventato il collo di bottiglia principale per molte industrie emergenti come l'energia rinnovabile, gli EV e gli aerei elettrici. Le batterie a stato solido rappresentano un vero e proprio candidato per risolvere i problemi di archiviazione in quanto offrono una combinazione di densità di energia elevata e di sicurezza intrinseca. Tuttavia, l'intricatilità di produzione, il costo elevato e la bassa conducibilità ionica di elettrolita solida hanno ridotto il loro utilizzo a poche micro batterie. Schemi tridimensionali, come trincee esagonali in wafer di silicio, possono moltiplicare la capacità per area della cella e quindi ridurre sostanzialmente il costo. La tecnica di deposizione dello strato atomico, d'altra parte, può produrre strati ultra sottili di elettrolita solida e rendere possibili maggiori uscite di potenza. Il presente lavoro, eseguito in Infineon Technologies, riguarda lo studio di fattibilità di una batteria tridimensionale a stato solido con uno strato ultra sottile di elettrolito. L'inchiesta si svolge attraverso prospettive tecniche e aziendali. Nella parte tecnica viene presentata la simulazione elettrochimica isotermica della batteria. Viene condotta una modellazione bidimensionale per diverse geometrie e proprietà del materiale. A differenza del disegno originale, si è scoperto che per gli spessori del catodo superiore a 3μm l'energia specifica cade anche sotto le batterie convenzionali. L'analisi dei profili di concentrazione mostra che ciò è dovuto alla mancanza di penetrazione efficace degli atomi Li nella matrice catodica. Di conseguenza, è stata effettuata un'analisi parametrica per valutare le prestazioni complessive della batteria per grandi combinazioni di spessore e c-rate. Il risultato di questa analisi e di ulteriori studi di letteratura ha rivelato che per piccoli spessori, la batteria tridimensionale a stato solido supera le condizioni delle batterie in termini di energia specifica, densità di potenza, carica della velocità, della sicurezza e della durata del ciclo. Tuttavia, il costo della produzione è stato trovato a 2900 $ / kWh, che è circa 10 a 15 volte più delle batterie tradizionali. Nella parte aziendale, abbiamo cercato applicazioni in cui il beneficio fornito dalla batteria ha superato il suo elevato costo. Drones, smartphone e smart case per batteria, noleggio di batterie e veicoli elettrici sono stati scelti in base a questo criterio e sono state sviluppate proposizioni di vendita uniche e tela di modello di business per ciascuno di essi. Nel complesso, si conclude che la batteria tridimensionale è davvero molto promettente, tuttavia i suoi costi elevati sfidano la sua commercializzazione. Questo problema può essere risolto partendo da mercati di nicchia per aumentare il know-how e beneficiare anche dell'economia di scala.
Feasibility study on three dimensional all-solid-state battery and its application possibilities within the electronics supply chain
ADIM HAFSHEJANI, ALI
2016/2017
Abstract
Storage has become the main bottleneck for many emerging industries such as renewable energy, EVs and electric aircrafts. All-solid-state batteries stand as a viable candidate to solve storage problem as they offer a combination of high energy density and intrinsic safety. However, manufacturing intricacy, high cost and low solid electrolyte ionic conductance has shrunk their utilization to merely micro-batteries. Three-dimensional schemes, such as hexagonal trenches in silicon wafer, can multiply the capacity per area of the cell and thus substantially decrease the cost. Atomic layer deposition technique, on the other hand, can produce ultra-thin layers of solid electrolyte and make higher power outputs possible. The present work, which was executed in Infineon Technologies, deals with the feasibility study of three-dimensional all-solid-state battery with ultra-thin layer of electrolyte. The investigation is carried out through both technical and business perspectives. In the technical part, isothermal electrochemical simulation of the battery is presented. Two-dimensional modelling for different geometries and material properties is conducted. Unlike the original design, it was found that for thicknesses of cathode higher than 3µm the specific energy falls even below conventional batteries. The analysis of the concentration profiles unveils that this is due to lack of effective penetration of Li atoms in cathode matrix. As a result, a parametric investigation was done to evaluate overall performance of the battery for vast combinations of thickness and c-rates. The result of this analysis and further literature study revealed that for small thicknesses, three-dimensional all-solid-state battery outperforms state of the art batteries in terms of specific energy, power density, charging c-rate, safety and cycle life. However, cost of manufacturing was found to be 2900 $/kWh which is about 10 to 15 times more than conventional batteries. In the business part, we sought applications in which the benefit provided by the battery outweighed its elevated cost. Drones, smartphone and smart battery case, battery rental and electric vehicles were chosen based on this criterion and unique selling proposition and business model canvas were developed for each of them. Overall, it is concluded that the three-dimensional battery is indeed very promising, however its high cost challenges its commercialization. This problem can be solved by starting from niche markets in order to increase the know-how and also benefit from economy of scale.File | Dimensione | Formato | |
---|---|---|---|
master thesis.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Thesis text
Dimensione
3.91 MB
Formato
Adobe PDF
|
3.91 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/136436