The design of implantable biomechanical devices is aimed at obtaining an effective performance and at gaining long-term reliability. Indeed, many of these devices are subjected to a high number of cyclic loads and are still affected by fatigue failure. A detailed approach to the durability analysis for biomechanical implantable devices is depicted from inputs based on clinical data, in vitro measurements and numerical simulations. Certainly, an important point is the definition of the in vivo loading conditions, which derive from the interaction between the device and the diseased area after implantation. Generally, literature studies recognize most of the difficulties in modelling the diseased patient area, while considering more straightforward the definition of the device numerical model. Nevertheless, some issues can also occur in the device modelling that, when not properly addressed, make the fatigue assessment unreliable. For this reason, the PhD thesis focuses on the device numerical description and the approach to evaluate fatigue endurance, highlighting various non-trivial aspects to be considered. Two biomechanical implantable devices are studied: the NiTi peripheral stents and the Titanium spinal rods. NiTi stents were studied to assess the influence of a complex geometry in the device modelling. Moreover, the NiTi material description was performed by means of different approaches: an evaluation of material specimens, when available, and an innovative identification method applied directly on the stent. The identification approach exploits the surrogate-assisted optimization and resulted to give positive results in the improvement of the fatigue assessment reliability. Lastly, the standard approach for NiTi stent durability assessment requires the comparison between the actual stress-strain field in the device, regarding strain, and a reference material strain limit. Since the strain field induced into the stent is multiaxial and non-proportional, the comparison with a material limit requires the adoption of a criterion. Several literature fatigue models for metals were evaluated in the prediction of the fatigue behaviour of the NiTi stents since none of them is particularly formulated for shape memory alloys. Titanium spinal rods are contoured to fit the spinal curvature before implantation. This characteristic permitted to study the influence of internal residual stresses in the device fatigue behaviour. The outcomes evidence a strong influence of the residual state of stresses after preimplantation procedure and highlight how this issues could both increase or decrease the device long-term performances. The diversity of the two devices permitted to illustrate wide aspects of the modelling and to derive some conclusions which can be extended to other biomechanical applications. An adequate number of samples, available for both the devices, was used in several experimental investigations to validate the numerical findings. In conclusion, the thesis presents several outlooks. In the field of the academic and clinical research, it gives an upgrade in the state of the art and allows to improve the reliability in preoperative planning and postoperative follow-up. In the industrial developments, it could give high improvements in the design of the devices and could permit to work with a focus on the optimization of the long-term performance of biomechanical implantable devices, trying to set the bar higher in the field.
La progettazione di dispositivi biomeccanici impiantabili è finalizzata all’ottenimento dell’affidabilità a lungo termine. Molti di questi dispositivi sono soggetti ad un alto numero di cicli di carico e sono ancora affetti da fallimento per fatica meccanica. Un approccio dettagliato alla analisi di durabilità per dispositivi biomeccanici impiantabili è descritto basandosi su dati clinici, misurazioni sperimentali in vitro e simulazioni numeriche. Un punto importante è la definizione delle condizioni di carico in vivo, le quali derivano dall’interazione tra il dispositivo e l’area patologica dopo l’impianto. Generalmente gli studi di letteratura riconoscono molte delle difficoltà nel modellare l’area patologica del paziente, mentre considerano più lineare la definizione del modello numerico del dispositivo. Nonostante ciò alcune problematiche possono incorrere nella modellazione del dispositivo che, se non propriamente condotta, rende lo studio della fatica inaffidabile. Per questo motivo la tesi di dottorato si concentra sulla descrizione numerica del dispositivo e sulla valutazione della resistenza a fatica, evidenziandone diversi aspetti di non semplice valutazione. Vengono prese in esame due diverse tipologie di dispositivi impiantabili: stent periferici in Nitinol e barre spinali in lega di titanio. Gli stent in Nitinol sono studiati per valutare l’influenza che hanno geometrie complesse nella modellazione del dispositivo. Inoltre la descrizione del materiale è svolta tramite diversi approcci: la misura direttamente da provini del materiale, se disponibili, e un innovativo metodo di identificazione applicato direttamente al dispositivo. La tecnica di identificazione sfrutta un algoritmo di ottimizzazione e ha dato risultati positivi nel miglioramento della valutazione dello studio della fatica meccanica. Infine, l’approccio standard allo studio della durabilità degli stent in Nitinol richiede il confronto tra lo stato di sollecitazione agente nel dispositivo, in termini di deformazione, e una curva limite a fatica di riferimento del materiale. Dato il campo di deformazioni interne allo stent, il quale è fortemente multi-assiale e non proporzionale, il confronto con il limite del materiale richiede l’adozione di un criterio. Diversi modelli da letteratura per descrivere la fatica nei metalli sono stati valutati in termini di predittività del comportamento a fatica di stent in Nitinol. Le barre spinali in titanio sono piegate prime dell’impianto al fine di replicare la curvatura fisiologica della colonna vertebrale. Questa caratteristica ha permesso di studiare l’influenza di stress residui interni alla struttura nel comportamento a fatica del dispositivo. I risultati evidenziano una forte incidenza dello stato di sollecitazione residuo pre-impianto evidenziando come questa tematica possa sia aumentare che diminuire le prestazioni a lungo termine del dispositivo. La diversità dei due dispositivi studiati ha permesso di porre l’attenzione su diversi aspetti della modellazione e di trarre conclusioni che possono essere estese ad altre applicazioni biomeccaniche. Un adeguato numero di campioni, disponibile per entrambi i dispositivi, è stato usato in numerosi esperimenti al fine di validare le predizioni numeriche. In conclusione la tesi presenta diverse prospettive. Nel campo della ricerca accademica e clinica permette un aggiornamento dello stato dell’arte, un miglioramento nell’affidabilità relativa alle pianificazioni pre-operatorie e nello studio clinico di fase post-operatoria. Nello sviluppo industriale dà un miglioramento nella progettazione dei dispositivi e permette di lavorare nell’ottica di una ottimizzazione delle prestazioni a lungo termine dei dispositivi biomeccanici impiantabili cercando di alzarne le qualità in campo.
Biomechanical implantable device modelling: critical issues for reliable prediction of fatigue behaviour
ALLEGRETTI, DARIO
Abstract
The design of implantable biomechanical devices is aimed at obtaining an effective performance and at gaining long-term reliability. Indeed, many of these devices are subjected to a high number of cyclic loads and are still affected by fatigue failure. A detailed approach to the durability analysis for biomechanical implantable devices is depicted from inputs based on clinical data, in vitro measurements and numerical simulations. Certainly, an important point is the definition of the in vivo loading conditions, which derive from the interaction between the device and the diseased area after implantation. Generally, literature studies recognize most of the difficulties in modelling the diseased patient area, while considering more straightforward the definition of the device numerical model. Nevertheless, some issues can also occur in the device modelling that, when not properly addressed, make the fatigue assessment unreliable. For this reason, the PhD thesis focuses on the device numerical description and the approach to evaluate fatigue endurance, highlighting various non-trivial aspects to be considered. Two biomechanical implantable devices are studied: the NiTi peripheral stents and the Titanium spinal rods. NiTi stents were studied to assess the influence of a complex geometry in the device modelling. Moreover, the NiTi material description was performed by means of different approaches: an evaluation of material specimens, when available, and an innovative identification method applied directly on the stent. The identification approach exploits the surrogate-assisted optimization and resulted to give positive results in the improvement of the fatigue assessment reliability. Lastly, the standard approach for NiTi stent durability assessment requires the comparison between the actual stress-strain field in the device, regarding strain, and a reference material strain limit. Since the strain field induced into the stent is multiaxial and non-proportional, the comparison with a material limit requires the adoption of a criterion. Several literature fatigue models for metals were evaluated in the prediction of the fatigue behaviour of the NiTi stents since none of them is particularly formulated for shape memory alloys. Titanium spinal rods are contoured to fit the spinal curvature before implantation. This characteristic permitted to study the influence of internal residual stresses in the device fatigue behaviour. The outcomes evidence a strong influence of the residual state of stresses after preimplantation procedure and highlight how this issues could both increase or decrease the device long-term performances. The diversity of the two devices permitted to illustrate wide aspects of the modelling and to derive some conclusions which can be extended to other biomechanical applications. An adequate number of samples, available for both the devices, was used in several experimental investigations to validate the numerical findings. In conclusion, the thesis presents several outlooks. In the field of the academic and clinical research, it gives an upgrade in the state of the art and allows to improve the reliability in preoperative planning and postoperative follow-up. In the industrial developments, it could give high improvements in the design of the devices and could permit to work with a focus on the optimization of the long-term performance of biomechanical implantable devices, trying to set the bar higher in the field.File | Dimensione | Formato | |
---|---|---|---|
2017-10-18 PhD Allegretti.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
13.92 MB
Formato
Adobe PDF
|
13.92 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/136535