This thesis is focused on the development of a two-dimensional electronic spectroscopy setup in the ultraviolet, in order to study the structure of important biomolecules. Two-dimensional electronic spectroscopy (2D-ES) is the most complete time-resolved optical experiment, providing the maximum amount of information within third-order non-linear spectroscopy. By correlating the information content of the non-linear signal to excitation and probing wavelengths, 2D-ES allows to measure homogeneous line widths, spectral diffusion, couplings and energy transfers between energy levels. It has been successfully implemented in the infra-red and visible ranges. In the ultraviolet range, where most biomolecules absorb, it is expected to provide important information about the ultra-fast dynamics and structural conformations of molecules such as DNA and proteins. The extension of 2D-ES to the ultraviolet range is not straightforward, as technical difficulties of this technique become more challenging in this wavelength range. In the first chapter will be discussed the propagation of ultra-short pulses in a dispersive medium, and several non-linear optical generation processes that will be exploited in the setup. In the second chapter pump-probe and two-dimensional spectroscopy are briefly explained, detailing the efforts done up to now to extend the two techniques to the ultraviolet range. After these introductory chapters, the employed setup is described, which is based on the pump-probe technique using excitation with tunable, narrowband pump pulses. This allows us to obtain a set of transient absorption maps resolved as a function of the excitation and detection frequencies, which contains structural information of the sample. The pump pulses are tunable in the 270 - 350 nm ultraviolet range, allowing to excite electronic transitions in the test samples (tryptophan, peptides and pyrene), while the probe can be chosen between a visible or ultraviolet white light continuum, covering the whole 300 - 700 nm range. In the fourth chapter we show results of measurements made to test the setup performance. Time-resolved two dimensional measurements on pyrene are performed and compared to literature, demonstrating that the setup works properly. Lastly we show an application to the study of peptides, starting from the analysis of a single amino acid (tryptophan), following then with the measurement of a tryptophan-based peptide (CWWC). By employing pump-probe measurement the aim is to discern between the folded or unfolded configuration, based on the presence of a charge transfer signal in the 450 nm to 530 nm probing range.
Questa tesi `e incentrata sullo sviluppo di un setup sperimentale per l’acquisizione di spettri di assorbimento bidimensionali nell’ultravioletto risolti in tempo, allo scopo di studiare la struttura di importanti biomolecole. La spettroscopia elettronica bidimensionale (2D-ES) `e la tecnica di spettroscopia ultraveloce pi`u completa possibile, poich`e fornisce la massima quantit`a di informazioni per quanto riguarda effetti non lineari del terzo ordine. Correlando il contenuto informativo del segnale non lineare alle lunghezze d’onda di eccitazione e di sonda, la 2D-ES consente di misurare allargamenti di riga omogenei, diffusione spettrale, traferimenti di carica e trasferimenti di energia tra i diversi livelli delle molecole. `E stata implementata con successo nel’infrarosso e nel visibile. Nell’ultravioletto, la regione spettrale di assorbimento della maggior parte delle biomolecole, si prevede di ottenere importanti informazioni sulle dinamiche ultra-veloci e sulla struttura di molecole come il DNA e le proteine. L’estensione di 2D-ES alla gamma ultravioletta non `e tuttavia semplice, in quanto le difficolt`a pratiche di questa tecnica crescono notevolmente in questo intervallo di lunghezze d’onda. La tesi `e organizzata nel modo seguente. Nel primo capitolo si discuteranno la propagazione di impulsi ultrabrevi nei mezzi dispersivi e i diversi processi non lineari che saranno sfruttati nel setup. Nel secondo capitolo verr`a brevemente spiegata la toeria dietro le misure di pump-probe e spettroscopia bidimensionale, enfatizzando infine gli sforzi fatti finora per estendere le due tecniche nell’ultravioletto. Dopo questi capitoli introduttivi viene descritto il setup utilizzato, basato sulla tecnica di pump-probe mediante l’eccitazione con impulsi di pompa accordabili a banda stretta. Ci`o consente di ottenere una serie di mappe di assorbimento risolte in tempo e in funzione delle frequenze di eccitazione e di sonda, che racchiudono importanti informazioni strutturali sul campione. Gli impulsi di pompa sono accordabili nell’ultravioletto da 270 a 350 nm, permettendo di eccitare transizioni elettroniche nei campioni scelti (triptofano, peptidi e pirene), mentre l’impulso di sonda `e costituito da una radiazione bianca nel visibile o nell’ultravioletto, spaziando tra i 300 e i 700 nm. Nel quarto capitolo si mostriano i risultati delle misure effettuate per testare le prestazioni di setup. Vengono eseguite misure di spettroscopia bidimensionale risolta in tempo sul pirene per poi essere confrontate con la letteratura, dimostrando che l’apparato sperimentale funziona correttamente. Infine si mostra un’applicazione allo studio dei peptidi, partendo dall’analisi di un singolo amminoacido (triptofano) e proseguendo successivamente con la misura di un peptide (CWWC). Utilizzando misure di pump-probe, lo scopo `e quello di distinguere tra la configurazione lineare o folded, tramite un segnale di trasferimento di carica nell’intervallo di lunghezze d’onda da 450 a 530 nm.
Development of a two dimensional electronic spectroscopy setup in the UV
ACONITO, PIERLUIGI
2016/2017
Abstract
This thesis is focused on the development of a two-dimensional electronic spectroscopy setup in the ultraviolet, in order to study the structure of important biomolecules. Two-dimensional electronic spectroscopy (2D-ES) is the most complete time-resolved optical experiment, providing the maximum amount of information within third-order non-linear spectroscopy. By correlating the information content of the non-linear signal to excitation and probing wavelengths, 2D-ES allows to measure homogeneous line widths, spectral diffusion, couplings and energy transfers between energy levels. It has been successfully implemented in the infra-red and visible ranges. In the ultraviolet range, where most biomolecules absorb, it is expected to provide important information about the ultra-fast dynamics and structural conformations of molecules such as DNA and proteins. The extension of 2D-ES to the ultraviolet range is not straightforward, as technical difficulties of this technique become more challenging in this wavelength range. In the first chapter will be discussed the propagation of ultra-short pulses in a dispersive medium, and several non-linear optical generation processes that will be exploited in the setup. In the second chapter pump-probe and two-dimensional spectroscopy are briefly explained, detailing the efforts done up to now to extend the two techniques to the ultraviolet range. After these introductory chapters, the employed setup is described, which is based on the pump-probe technique using excitation with tunable, narrowband pump pulses. This allows us to obtain a set of transient absorption maps resolved as a function of the excitation and detection frequencies, which contains structural information of the sample. The pump pulses are tunable in the 270 - 350 nm ultraviolet range, allowing to excite electronic transitions in the test samples (tryptophan, peptides and pyrene), while the probe can be chosen between a visible or ultraviolet white light continuum, covering the whole 300 - 700 nm range. In the fourth chapter we show results of measurements made to test the setup performance. Time-resolved two dimensional measurements on pyrene are performed and compared to literature, demonstrating that the setup works properly. Lastly we show an application to the study of peptides, starting from the analysis of a single amino acid (tryptophan), following then with the measurement of a tryptophan-based peptide (CWWC). By employing pump-probe measurement the aim is to discern between the folded or unfolded configuration, based on the presence of a charge transfer signal in the 450 nm to 530 nm probing range.File | Dimensione | Formato | |
---|---|---|---|
Thesis_PierluigiAconito.pdf
accessibile in internet per tutti
Descrizione: Tesi integrale
Dimensione
5.09 MB
Formato
Adobe PDF
|
5.09 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/136921