The capability of advanced, high performance aircraft to operate at high turn rates and high angle of attack often results in emanating vortical, unsteady flow from the aircraft’s forebody and consequently the disturbed flow impinges on the wings and the vertical tail of the aircraft. The disturbed flow carries the sufficient amount of energy to excite the structural modes of the wing and the vertical tail of the aircraft. The phenomenon is named as buffeting and produces undesirable vibrations which limits the flight envelope of the high performance aircraft and reduces the fatigue life of the component under buffet loads. The dissertation presents advanced novel methodologies to actively alleviate the buffeting of the wings of the high performance aircraft. Control surfaces located on the wing are actively controlled to redistribute the aerodynamic loads. Two different aircraft are considered for application of methodologies, these include the so-called Aluminum Fighter Aircraft (AFA) and the X-DIA commercial aircraft. The research presents two active control schemes for Aluminum Fighter Aircraft (AFA), named as Buffet Mitigation Control System (BMCS). The aeroelastic analysis of the wing is carried out by using the finite element software MSC/NASTRAN. Accurate description of aeroelastic behavior is acquired in terms of linear time invariant (LTI) state space system. Experimentally acquired pressure fluctuations on the wings of the aircraft are used to model the buffet loads as exogenous inputs to the state space system. The buffet model is defined analytically and numerically with the help of shape filter. The formulated Static Output Feedback (SoF) controller is based on simultaneous solution of Lyapunov’s equations which are numerically solved by deterministic and stochastic optimization techniques. Heuristic numerical methods employ first and second order quadratic formulation of objective function to minimize the feedback gain for the control surfaces located on the wing. The two distinct active control schemes are characterized by unconstrained and optimized actuator movement for buffet load alleviation. The process followed for the minimization of feedback gain enabled the examination of controllability and observability for the numerical conditioning of gramian with relative measure of controllability and observability. Nowadays, high performance is also attributed to commercial aircraft. One such example is the scaled aircraft model named as X-DIA that it was built by Politecnico di Milano under European project Active Aeroelastic Aircraft Structures (3AS) and represents the aeroelastic prototype of an advanced commercial aircraft. For the wing of X-DIA aircraft, six active control techniques are developed and named as Buffet Load Mitigation Systems (BLMS). The developed numerical schemes for X-DIA wing are followed by a comprehensive experimental validation at Politecnico di Milano-Department of Aerospace Science and Technology in the De Ponte wind tunnel. BLMS-I presents a unique modal control with an aim to of reducing structural vibrations in the first bending and first torsion mode, it ensured the performance in the flight envelope. The state space model is completed by incorporating inputs for transducers to model buffet loads. The Static Output Feedback (SoF) control law is transformed by ignoring the computationally expensive terms, that gave static output feedback controller new compressed set of equations to be efficiently computed by numerical methods. In BLMS-II, the work proposes a method to rank the efficiency of the actuators for attenuation of specific modes. A unifying theme to this phase is the application of Hankel singular values on the experimental data conducted during the buffet load mitigation research. Modal information from experimental data is used to define actuator/sensor relationships, once the actuator and sensor is decided for mode of interest, suboptimal control laws can be applied for specific performance metrics. In BLMS-III, novel technique is presented to enhance the performance of the controller in the first torsional mode, notch and peak filters are applied on the output of the system to alleviate the buffet loads in the torsion mode specifically. Robustness of the optimization algorithms is proved by analyzing the system under the effect of uncertainties in the instrumentation of the system in BLMS-IV. This approach also leads to insurance of robust controller for system under uncertainties in the instrumentation. The work also presents the procedure for quantification of robust aeroelastic system in BLMS-V, the task is accomplished by introducing uncertainties in the aeroelastic reduced order state space system of the X-DIA aircraft. The model order is reduced by balanced truncation method. Mu synthesis approach is used to quantify the robust stability and robust performance margins of the aeroelastic system. BLMS-VI is directed towards the implementation of real-time robust controllers (H -infinity and Mu Controller) for the Aeroelastic systems. It exemplifies the power of robust controls developed for aeroelastic system. Thanks to the decomposition approach, the order of the system is significantly reduced. Multi-input and multi-output system is reduced to single-input single-output systems based on analysis performed in BLMSII. In Mu control the perturbed model is found to be highly sensitive to small disturbances in the control systems dynamics. Such idealizations helped in the realization of robust, simple and practical based systems which corresponded to the high fidelity of the system control.
La capacità di velivoli avanzati e ad alte prestazioni di operare ad alte velocità di virata e alto angolo di attacco spesso si traduce in un flusso vorticoso e instabile dal capo del velivolo e di conseguenza il flusso disturbato colpisce le ali e la coda verticale dell'aereo. Il flusso disturbato trasporta la sufficiente quantità di energia per eccitare i modi strutturali dell'ala e la coda verticale dell'aeromobile. Il fenomeno è chiamato "buffeting" e produce vibrazioni indesiderate che limitano l'inviluppo di volo dell'aeromobile ad alte prestazioni e riducono la vita a fatica del componente sotto carichi a buffet. La tesi presenta avanzate nuove metodologie per alleviare attivamente il buffeting delle ali del velivolo ad alte prestazioni. Le superfici di controllo posizionate sull'ala sono attivamente controllate per ridistribuire i carichi aerodinamici. Per l'applicazione delle metodologie vengono presi in considerazione due diversi velivoli, tra cui il cosiddetto Aluminium Fighter Aircraft (AFA) e gli aerei commerciali X-DIA. La ricerca presenta due schemi di controllo attivi per alluminio Fighter Aircraft (AFA), denominato Buffet Mitigation Control System (BMCS). L'analisi aeroelastica dell'ala viene eseguita utilizzando il software agli elementi finiti MSC / NASTRAN. La descrizione accurata del comportamento aeroelastico viene acquisita in termini di sistema dello spazio di stato lineare invariante (LTI). Le fluttuazioni di pressione acquisite sperimentalmente sulle ali dell'aereo vengono utilizzate per modellare i carichi a buffet come ingressi esogeni al sistema spaziale statale. Il modello a buffet è definito analiticamente e numericamente con l'aiuto del filtro di forma. Il controller Static Output Feedback (SoF) formulato si basa sulla soluzione simultanea delle equazioni di Lyapunov che sono risolte numericamente mediante tecniche di ottimizzazione deterministica e stocastica. I metodi numerici euristici utilizzano la formulazione quadratica di primo e secondo ordine della funzione obiettivo per minimizzare il guadagno di feedback per le superfici di controllo posizionate sull'ala. I due distinti schemi di controllo attivo sono caratterizzati da un movimento attuatore non vincolato e ottimizzato per la riduzione del carico a buffet. Il processo seguito per minimizzare il guadagno di feedback ha permesso di esaminare la controllabilità e l'osservabilità per il condizionamento numerico del gramian con la relativa misura di controllabilità e osservabilità. Al giorno d'oggi, le prestazioni elevate sono attribuite anche agli aerei commerciali. Uno di questi esempi è il modello di aeromobile in scala denominato X-DIA che è stato costruito dal Politecnico di Milano nell'ambito del progetto europeo Active Aeroelastic Aircraft Structures (3AS) e rappresenta il prototipo aeroelastico di un velivolo commerciale avanzato. Per l'ala degli aerei X-DIA, sono state sviluppate sei tecniche di controllo attivo denominate "Buffet Load Mitigation Systems (BLMS)". Gli schemi numerici sviluppati per l'ala X-DIA sono seguiti da una validazione sperimentale completa presso il Politecnico di Milano-Dipartimento di Scienze e Tecnologie Aerospaziali nella galleria del vento di De Ponte. BLMS-I presenta un controllo modale unico con lo scopo di ridurre le vibrazioni strutturali nella prima modalità di piegatura e prima torsione, ha assicurato le prestazioni nell'involucro di volo. Il modello dello spazio di stato è completato incorporando input per trasduttori per modellare i carichi a buffet. La legge di controllo del feedback dell'uscita statica (SoF) viene trasformata ignorando i termini computazionalmente costosi, che hanno fornito al controller di feedback dell'uscita statico un nuovo insieme di equazioni compresso per essere calcolato in modo efficiente mediante metodi numerici. In BLMS-II, il lavoro propone un metodo per classificare l'efficienza degli attuatori per l'attenuazione di modalità specifiche. Un tema unificante per questa fase è l'applicazione dei valori singolari di Hankel sui dati sperimentali condotti durante la ricerca sulla mitigazione del carico a buffet. Le informazioni modali da dati sperimentali vengono utilizzate per definire le relazioni attuatore / sensore, una volta che l'attuatore e il sensore sono stati decisi per la modalità di interesse, le leggi di controllo subottimale possono essere applicate per specifiche metriche di prestazione. In BLMS-III, viene presentata una nuova tecnica per migliorare le prestazioni del controller nella prima modalità torsionale, i filtri di notch e di picco vengono applicati sull'uscita del sistema per alleviare in modo specifico i carichi a buffet nella modalità di torsione. La robustezza degli algoritmi di ottimizzazione è dimostrata analizzando il sistema sotto l'effetto delle incertezze nella strumentazione del sistema in BLMS-IV. Questo approccio porta anche all'assicurazione di un robusto controllore per il sistema in condizioni di incertezza nella strumentazione. Il lavoro presenta anche la procedura per la quantificazione del robusto sistema aeroelastico in BLMS-V, il compito si realizza introducendo incertezze nel sistema spaziale aeroelastico di ordine ridotto dello spazio del velivolo X-DIA. L'ordine del modello è ridotto dal metodo di troncamento bilanciato. L'approccio di sintesi Mu è usato per quantificare la robusta stabilità e i robusti margini di prestazione del sistema aeroelastico. BLMS-VI è diretto all'implementazione di controller robusti in tempo reale (H -infinity e Mu Controller) per i sistemi Aeroelastici. Esso esemplifica la potenza dei controlli robusti sviluppati per il sistema aeroelastico. Grazie all'approccio alla decomposizione, l'ordine del sistema è significativamente ridotto. Il sistema multi-input e multi-output è ridotto a sistemi single-input a singolo input basati sull'analisi eseguita in BLMSII. Nel controllo Mu si trova che il modello perturbato è altamente sensibile a piccoli disturbi nella dinamica dei sistemi di controllo. Tali idealizzazioni hanno aiutato nella realizzazione di sistemi robusti, semplici e pratici che corrispondevano all'alta fedeltà del controllo del sistema.
Methods and technologies for active control of dynamic loads on high performance aircraft
MALIK, SHEHARYAR
Abstract
The capability of advanced, high performance aircraft to operate at high turn rates and high angle of attack often results in emanating vortical, unsteady flow from the aircraft’s forebody and consequently the disturbed flow impinges on the wings and the vertical tail of the aircraft. The disturbed flow carries the sufficient amount of energy to excite the structural modes of the wing and the vertical tail of the aircraft. The phenomenon is named as buffeting and produces undesirable vibrations which limits the flight envelope of the high performance aircraft and reduces the fatigue life of the component under buffet loads. The dissertation presents advanced novel methodologies to actively alleviate the buffeting of the wings of the high performance aircraft. Control surfaces located on the wing are actively controlled to redistribute the aerodynamic loads. Two different aircraft are considered for application of methodologies, these include the so-called Aluminum Fighter Aircraft (AFA) and the X-DIA commercial aircraft. The research presents two active control schemes for Aluminum Fighter Aircraft (AFA), named as Buffet Mitigation Control System (BMCS). The aeroelastic analysis of the wing is carried out by using the finite element software MSC/NASTRAN. Accurate description of aeroelastic behavior is acquired in terms of linear time invariant (LTI) state space system. Experimentally acquired pressure fluctuations on the wings of the aircraft are used to model the buffet loads as exogenous inputs to the state space system. The buffet model is defined analytically and numerically with the help of shape filter. The formulated Static Output Feedback (SoF) controller is based on simultaneous solution of Lyapunov’s equations which are numerically solved by deterministic and stochastic optimization techniques. Heuristic numerical methods employ first and second order quadratic formulation of objective function to minimize the feedback gain for the control surfaces located on the wing. The two distinct active control schemes are characterized by unconstrained and optimized actuator movement for buffet load alleviation. The process followed for the minimization of feedback gain enabled the examination of controllability and observability for the numerical conditioning of gramian with relative measure of controllability and observability. Nowadays, high performance is also attributed to commercial aircraft. One such example is the scaled aircraft model named as X-DIA that it was built by Politecnico di Milano under European project Active Aeroelastic Aircraft Structures (3AS) and represents the aeroelastic prototype of an advanced commercial aircraft. For the wing of X-DIA aircraft, six active control techniques are developed and named as Buffet Load Mitigation Systems (BLMS). The developed numerical schemes for X-DIA wing are followed by a comprehensive experimental validation at Politecnico di Milano-Department of Aerospace Science and Technology in the De Ponte wind tunnel. BLMS-I presents a unique modal control with an aim to of reducing structural vibrations in the first bending and first torsion mode, it ensured the performance in the flight envelope. The state space model is completed by incorporating inputs for transducers to model buffet loads. The Static Output Feedback (SoF) control law is transformed by ignoring the computationally expensive terms, that gave static output feedback controller new compressed set of equations to be efficiently computed by numerical methods. In BLMS-II, the work proposes a method to rank the efficiency of the actuators for attenuation of specific modes. A unifying theme to this phase is the application of Hankel singular values on the experimental data conducted during the buffet load mitigation research. Modal information from experimental data is used to define actuator/sensor relationships, once the actuator and sensor is decided for mode of interest, suboptimal control laws can be applied for specific performance metrics. In BLMS-III, novel technique is presented to enhance the performance of the controller in the first torsional mode, notch and peak filters are applied on the output of the system to alleviate the buffet loads in the torsion mode specifically. Robustness of the optimization algorithms is proved by analyzing the system under the effect of uncertainties in the instrumentation of the system in BLMS-IV. This approach also leads to insurance of robust controller for system under uncertainties in the instrumentation. The work also presents the procedure for quantification of robust aeroelastic system in BLMS-V, the task is accomplished by introducing uncertainties in the aeroelastic reduced order state space system of the X-DIA aircraft. The model order is reduced by balanced truncation method. Mu synthesis approach is used to quantify the robust stability and robust performance margins of the aeroelastic system. BLMS-VI is directed towards the implementation of real-time robust controllers (H -infinity and Mu Controller) for the Aeroelastic systems. It exemplifies the power of robust controls developed for aeroelastic system. Thanks to the decomposition approach, the order of the system is significantly reduced. Multi-input and multi-output system is reduced to single-input single-output systems based on analysis performed in BLMSII. In Mu control the perturbed model is found to be highly sensitive to small disturbances in the control systems dynamics. Such idealizations helped in the realization of robust, simple and practical based systems which corresponded to the high fidelity of the system control.File | Dimensione | Formato | |
---|---|---|---|
2018_01_PhD_Malik.pdf
accessibile in internet per tutti
Descrizione: PhD Thesis - Sheharyar Malik
Dimensione
6.42 MB
Formato
Adobe PDF
|
6.42 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/137089