The work object of this doctoral thesis been focused on the study of different polysaccharidic materials with different characteristics. Linear and branched polysaccharides of both natural and synthetic origin have been studied in solution, in the solid or in the gel state. The work of my PhD can be divided into two parts: the first part (A) regarded the study of cellulose and cellulose derivatives; the second part (B) was focused on the diffusion study of small molecules loaded in different hydrogels composed by cross-linked polysaccharides (Agar-carbomer) or nanoporous cyclodextrin-based cross-linked materials (cyclodextrin nanosponges). Part (A). Cellulose is the most important natural polymer: it is mainly used in the production of paper, but also for the production of relevant industrial derivative such as cellophane and rayon. In the last decades cellulose has also been studied for the production of biofuels as non-fossil fuel source. From the analytical point of view, cellulose was studied by different academic and industrial groups using different solid state techniques such as: Powder X Ray Diffraction (PXRD), Fourier Transform Infra-Red Spectroscopy (FT-IR), solid state NMR spectroscopy, Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). In my work, I mainly used powder X-ray diffraction (PXRD) to study cellulosic materials. The objective was to develop innovative, easy to apply and accurate analytical methods for cellulose characterization and to monitor cellulose reactivity. I developed an accurate deconvolution method based on PXRD peaks and I applied it on industrial cellulose samples. Moreover, I applied multivariate statistical analysis to PXRD data in order to evaluate and predict the reactivity of cellulose. Within the study of cellulose and its derivatives, I studied carboxymethylcellulose (CMC). CMC is a linear, anionic polyether cellulose derivative, generally water soluble and with high molecular weight. The industrial synthesis of CMC is based on a slurry process and involves two steps: mercerization and etherification. The Degree of Substitution (DS) represents the average number of carboxymethyl groups present in each glucosidic unit. The typical DS range of commercial CMC is between 0.6 and 1.25. Several methods to provide DS of CMC have been previously reported in the literature. Most of them are based on chromatography, FT-IR spectroscopy or Scanning Electron Microscopy. The most commonly used method is based on the HPLC analysis of the hydrolysis products of CMCs with strong acids. In addition to this chromatographic method, different promising NMR methods for DS determination have been previously described. Some of these (both 1H and 13C) are also based on the analysis of hydrolyzed CMC. Others are non-destructive methods. The latter approaches are based on quantitative 13C NMR in solution (inverse GATED acquisition mode). DS value is obtained by peak integration. Severe limitations of these methods arise from the spectral overlaps generated by the mixture of regioisomers. Furthermore, the application is restricted only to CMC solutions with low viscosity in order to avoid line broadening. A novel, non-destructive method based on 13C HR-MAS NMR spectroscopy is proposed in this work. The method herein reported couples a wide applicability to CMCs with different purification degree, different viscosity and different origin (cotton linters or wood) with a non-destructive procedure. Thus the results of the analysis give more reliable picture of the DS of the CMC in its original state. Part (B). In the last decades hydrogels gained increasing interest as drug delivery scaffolds and permeation membranes due to their ability to control solute transport. The diffusion in polymers or in porous materials was previously studied by different groups using either NMR in solution or solid state techniques. However, a direct characterization of the active pharmaceutical ingredient (API) in the molecular environment of the drug delivery formulation (i.e. in the hydrogel) was missing in the literature. The innovation of the work herein discussed is in the direct observation of the dynamic behavior of small molecules confined in hydrogel matrixes. The study was carried out by using a High Resolution Magic Angle Spinning (HR-MAS) NMR probe. HR-MAS NMR allows to study the molecular environment and the transport properties of the drugs entrapped in the hydrogels. To the best of my knowledge, this type of study is unprecedented in the literature. Diffusion experiments were performed on Ethosuximide and Ibuprofen, taken as model drugs, loaded in hydrogels obtained from Agar-Carbomer (AC) and cyclodextrins nanosponges (CDNS). The signal intensity decays were collected using different observation time values (td) in the milliseconds range by means of the pulsed field gradient spin-echo (PFGSE) method. The experiments were repeated at several concentrations of the drug molecules dissolved in hydrogels having different mesh size. The signal decay provided the mean square displacement (MSD) values for each drug concentration. The MSD along the z reference axis <z2> is proportional to the observation time elevated to a power factor α. The α values define the normal Fickian random motion (α = 1), or anomalous, non-Fickian (α < 1, subdiffusive regime, α > 1 superdiffusive regime).
L'oggetto di lavoro di questa tesi di dottorato è stato focalizzato sullo studio di diversi materiali polisaccaridici con caratteristiche diverse. Polisaccaridi lineari e ramificati di origine sia naturale che sintetica sono stati studiati in soluzione, allo stato solido o gel. Il lavoro del mio dottorato può essere diviso in due parti: la prima parte (A) ha riguardato lo studio dei derivati della cellulosa e della cellulosa; la seconda parte (B) si è concentrata sullo studio della diffusione di piccole molecole caricate in diversi idrogel composti da polisaccaridi reticolati (agar-carbomer) o materiali reticolati a base di ciclodestrina nanoporosa (ciclodestrina nanospugne). Parte (A). La cellulosa è il polimero naturale più importante: è utilizzato principalmente nella produzione di carta, ma anche per la produzione di derivati industriali rilevanti come cellophane e rayon. Negli ultimi decenni la cellulosa è stata anche studiata per la produzione di biocarburanti come fonte di combustibile non fossile. Dal punto di vista analitico, la cellulosa è stata studiata da diversi gruppi accademici e industriali utilizzando diverse tecniche allo stato solido come: Diffrazione a raggi X (PXRD), Spettroscopia a infrarossi a trasformata di Fourier (FT-IR), spettroscopia NMR a stato solido, Scansione Microscopia elettronica (SEM) e microscopia elettronica a trasmissione (TEM). Nel mio lavoro, ho usato principalmente la diffrazione dei raggi X in polvere (PXRD) per studiare materiali cellulosici. L'obiettivo era sviluppare metodi analitici innovativi, facili da applicare e accurati per la caratterizzazione della cellulosa e monitorare la reattività della cellulosa. Ho sviluppato un metodo di deconvoluzione accurato basato su picchi PXRD e l'ho applicato su campioni di cellulosa industriale. Inoltre, ho applicato analisi statistiche multivariate ai dati PXRD al fine di valutare e prevedere la reattività della cellulosa. Nello studio della cellulosa e dei suoi derivati, ho studiato la carbossimetilcellulosa (CMC). CMC è un derivato lineare di cellulosa di polietere anionico, generalmente idrosolubile e ad alto peso molecolare. La sintesi industriale di CMC si basa su un processo di sospensione e prevede due passaggi: mercerizzazione ed eterificazione. Il grado di sostituzione (DS) rappresenta il numero medio di gruppi carbossimetilici presenti in ciascuna unità glucosidica. La tipica gamma DS di CMC commerciale è compresa tra 0,6 e 1,25. Diversi metodi per fornire DS di CMC sono stati precedentemente riportati in letteratura. La maggior parte di essi si basa sulla cromatografia, sulla spettroscopia FT-IR o sulla microscopia elettronica a scansione. Il metodo più comunemente usato si basa sull'analisi HPLC dei prodotti di idrolisi delle CMC con acidi forti. Oltre a questo metodo cromatografico, sono stati precedentemente descritti diversi metodi NMR promettenti per la determinazione di DS. Alcuni di questi (entrambi 1H e 13C) si basano anche sull'analisi della CMC idrolizzata. Altri sono metodi non distruttivi. Questi ultimi approcci si basano su un quantitativo 13C NMR in soluzione (modalità di acquisizione GATED inversa). Il valore di DS è ottenuto dall'integrazione del picco. Grave limitazione di questi metodi derivano dalle sovrapposizioni spettrali generate dalla miscela di regioisomeri. Inoltre, l'applicazione è limitata solo alle soluzioni CMC con bassa viscosità al fine di evitare l'allargamento della linea. In questo lavoro viene proposto un nuovo metodo non distruttivo basato sulla spettroscopia NMR HR-MAS 13C. Il metodo qui riportato riporta una ampia applicabilità ai CMC con diverso grado di purificazione, diversa viscosità e diversa origine (cascami di cotone o legno) con una procedura non distruttiva. Quindi i risultati dell'analisi danno un'immagine più affidabile del DS della CMC nel suo stato originale. Parte (B). Negli ultimi decenni gli idrogel hanno acquisito crescente interesse come impalcature per la somministrazione di farmaci e membrane di permeazione grazie alla loro capacità di controllare il trasporto dei soluti. La diffusione in polimeri o in materiali porosi è stata precedentemente studiata da diversi gruppi utilizzando NMR in soluzione o tecniche a stato solido. Tuttavia, nella letteratura era mancante una caratterizzazione diretta dell'ingrediente farmaceutico attivo (API) nell'ambiente molecolare della formulazione di rilascio del farmaco (cioè nell'idrogel). L'innovazione del lavoro qui discusso riguarda l'osservazione diretta del comportamento dinamico di piccole molecole confinate in matrici di idrogel. Lo studio è stato condotto utilizzando una sonda NMR ad alta risoluzione Magic Angle Spinning (HR-MAS). HR-MAS NMR consente di studiare l'ambiente molecolare e le proprietà di trasporto dei farmaci intrappolati negli idrogel. Per quanto ne so, questo tipo di studio non ha precedenti nella letteratura. Esperimenti di diffusione sono stati condotti su Ethosuximide e Ibuprofen, presi come farmaci modello, caricati in idrogel ottenuti da agar-Carbomer (AC) e ciclodestrine nanospugne (CDNS). I decadimenti di intensità del segnale sono stati raccolti utilizzando diversi valori di tempo di osservazione (td) nell'intervallo dei millisecondi mediante il metodo spin-echo (PFGSE) del gradiente di campo pulsato. Gli esperimenti sono stati ripetuti a diverse concentrazioni del farmaco
Combined advanced structural tools for characterization of polysaccharidic polymers
FERRO, MONICA
Abstract
The work object of this doctoral thesis been focused on the study of different polysaccharidic materials with different characteristics. Linear and branched polysaccharides of both natural and synthetic origin have been studied in solution, in the solid or in the gel state. The work of my PhD can be divided into two parts: the first part (A) regarded the study of cellulose and cellulose derivatives; the second part (B) was focused on the diffusion study of small molecules loaded in different hydrogels composed by cross-linked polysaccharides (Agar-carbomer) or nanoporous cyclodextrin-based cross-linked materials (cyclodextrin nanosponges). Part (A). Cellulose is the most important natural polymer: it is mainly used in the production of paper, but also for the production of relevant industrial derivative such as cellophane and rayon. In the last decades cellulose has also been studied for the production of biofuels as non-fossil fuel source. From the analytical point of view, cellulose was studied by different academic and industrial groups using different solid state techniques such as: Powder X Ray Diffraction (PXRD), Fourier Transform Infra-Red Spectroscopy (FT-IR), solid state NMR spectroscopy, Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). In my work, I mainly used powder X-ray diffraction (PXRD) to study cellulosic materials. The objective was to develop innovative, easy to apply and accurate analytical methods for cellulose characterization and to monitor cellulose reactivity. I developed an accurate deconvolution method based on PXRD peaks and I applied it on industrial cellulose samples. Moreover, I applied multivariate statistical analysis to PXRD data in order to evaluate and predict the reactivity of cellulose. Within the study of cellulose and its derivatives, I studied carboxymethylcellulose (CMC). CMC is a linear, anionic polyether cellulose derivative, generally water soluble and with high molecular weight. The industrial synthesis of CMC is based on a slurry process and involves two steps: mercerization and etherification. The Degree of Substitution (DS) represents the average number of carboxymethyl groups present in each glucosidic unit. The typical DS range of commercial CMC is between 0.6 and 1.25. Several methods to provide DS of CMC have been previously reported in the literature. Most of them are based on chromatography, FT-IR spectroscopy or Scanning Electron Microscopy. The most commonly used method is based on the HPLC analysis of the hydrolysis products of CMCs with strong acids. In addition to this chromatographic method, different promising NMR methods for DS determination have been previously described. Some of these (both 1H and 13C) are also based on the analysis of hydrolyzed CMC. Others are non-destructive methods. The latter approaches are based on quantitative 13C NMR in solution (inverse GATED acquisition mode). DS value is obtained by peak integration. Severe limitations of these methods arise from the spectral overlaps generated by the mixture of regioisomers. Furthermore, the application is restricted only to CMC solutions with low viscosity in order to avoid line broadening. A novel, non-destructive method based on 13C HR-MAS NMR spectroscopy is proposed in this work. The method herein reported couples a wide applicability to CMCs with different purification degree, different viscosity and different origin (cotton linters or wood) with a non-destructive procedure. Thus the results of the analysis give more reliable picture of the DS of the CMC in its original state. Part (B). In the last decades hydrogels gained increasing interest as drug delivery scaffolds and permeation membranes due to their ability to control solute transport. The diffusion in polymers or in porous materials was previously studied by different groups using either NMR in solution or solid state techniques. However, a direct characterization of the active pharmaceutical ingredient (API) in the molecular environment of the drug delivery formulation (i.e. in the hydrogel) was missing in the literature. The innovation of the work herein discussed is in the direct observation of the dynamic behavior of small molecules confined in hydrogel matrixes. The study was carried out by using a High Resolution Magic Angle Spinning (HR-MAS) NMR probe. HR-MAS NMR allows to study the molecular environment and the transport properties of the drugs entrapped in the hydrogels. To the best of my knowledge, this type of study is unprecedented in the literature. Diffusion experiments were performed on Ethosuximide and Ibuprofen, taken as model drugs, loaded in hydrogels obtained from Agar-Carbomer (AC) and cyclodextrins nanosponges (CDNS). The signal intensity decays were collected using different observation time values (td) in the milliseconds range by means of the pulsed field gradient spin-echo (PFGSE) method. The experiments were repeated at several concentrations of the drug molecules dissolved in hydrogels having different mesh size. The signal decay provided the mean square displacement (MSD) values for each drug concentration. The MSD along the z reference axisFile | Dimensione | Formato | |
---|---|---|---|
2018_01_PhD_Ferro.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Tesi
Dimensione
10.16 MB
Formato
Adobe PDF
|
10.16 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/137091