In this thesis, we present a continuous adjoint computations approach to shape optimization for unsteady fluid flow. The fluid is described by unsteady incompressible Navier-Stokes equations with slip with friction and penetration with resistance boundary conditions. We present the related adjoint equations. These equations are discretized using finite element approach. We explain the G2 discretization technique and we examine a mesh adaptivity process based on a goal-oriented error estimator. An optimization algorithm based on conservation of volume is considered. Finally, we give some numerical results.
In questo elaborato presentiamo problemi di controllo di forma con tecnica delle equazioni aggiunte. Il fluido considerato è descritto dall'equazione instazionaria per fluidi incomprimibili di Navier-Stokes con condizioni al bordo dette slip with friction and penetration with resistance. Presentiamo la relativa equazione aggiunta. Successivamente le equazioni vengono discretizzate utilizzando un approccio agli Elementi Finiti. Spieghiamo il modello detto G2 e consideriamo un processo adattivo basato su stimatori dell'errore di tipo goal-oriented. Esaminiamo un algoritmo di ottimizzazione basato sulla conservazione del volume. Concludiamo presentando alcuni risultati numerici.
Shape optimization : generalized boundary conditions for adjoint equations
PESARIN, MATTEO ADRIANO CIRO
2016/2017
Abstract
In this thesis, we present a continuous adjoint computations approach to shape optimization for unsteady fluid flow. The fluid is described by unsteady incompressible Navier-Stokes equations with slip with friction and penetration with resistance boundary conditions. We present the related adjoint equations. These equations are discretized using finite element approach. We explain the G2 discretization technique and we examine a mesh adaptivity process based on a goal-oriented error estimator. An optimization algorithm based on conservation of volume is considered. Finally, we give some numerical results.File | Dimensione | Formato | |
---|---|---|---|
Pesarin_12_2017.pdf
accessibile in internet per tutti
Descrizione: Testo della Tesi
Dimensione
2.74 MB
Formato
Adobe PDF
|
2.74 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/137198