Plasma actuators are a rather innovative technology to perform flow control, that can be applied to a wide variety of problems including noise and drag reduction, flow separation and laminar-turbulent transition control. Despite numerous advantages compared to equivalent techniques, including the low weight, the ease of realization, the possibility to retrofit them on already existing surfaces and a fast response time, they still require optimization and further study to overcome some limitations, and in particular a low control authority for high speed flows. In this experimental work, performed at Politecnico di Milano and at the Institut PPrime, Poitiers, a characterization of plasma actuators, both corona and DBD (dielectric barrier discharge) types, with multi-tip geometry, that means with triangular tips on the active electrodes, is carried out. This geometry was already introduced in some literature works for the DBD, even though a proper optimization was lacking, whereas it is innovative for surface corona actuators. First, the velocity induced by 30 different actuators at the bench is compared, in order to find an optimal geometry for the tips. Second, the same actuators are applied on a NACA0015 airfoil in the wind tunnel, for a separation control problem, where the actuators performances are evaluated in terms of lift and drag coefficients modifications, measured with an appositely built balance. Both steady and unsteady actuation are explored. The latter, consisting in a burst modulated sinusoidal voltage, is innovative for corona actuators and different combinations of reduced frequency and duty cycle are investigated. Third, one multi-tip DBD and one multi-tip corona are selected and deeply characterized by means of power measurements, ICCD (intensified charge coupled device) photographs of the discharge at the bench and time-resolved PIV (particle image velocimetry) of the flow when they are applied on a NACA0015 airfoil in the wind tunnel, in order to gain a better insight of the control process. The various experimental campaigns allow to characterize the flow induced by these actuators and their behavior in a separation control problem on an airfoil. Optimal geometries and combinations of electrical parameters are individuated. The tips increase the induced velocity and the control performances with respect to traditional straight configurations, at the price of a larger power consumption for equal input voltage. For the corona actuators, the discharge stability, one of the main weaknesses of these devices, is remarkably improved by sharp tips (and unsteady actuation), whereas for DBD the tips promote the creation of vortical structures that can increase the control authority. Steady actuation is to be preferred in light stall, whereas unsteady actuation, with a reduced frequency in the order of the unity, gives the highest lift increase in deep stall. The efficiency of multi-tip corona devices is one order of magnitude larger than for DBD, thanks to their lower power consumption.
Gli attuatori al plasma sono una tecnologia di controllo di flussi aerodinamici relativamente innovativa, i quali possono essere applicati in una grande varietà di problemi, compresi riduzione di rumore e resistenza, controllo della separazione e della transizione laminare-turbolenta. Nonostante numerosi punti di forza rispetto a tecnologie equivalenti, tra cui il peso e l’ingombro limitati, la facilità di realizzazione, la possibilità di applicarli su superfici già esistenti e i tempi di risposta estremamente rapidi, richiedono ancora ulteriore studio e ottimizzazione per superare alcune limitazioni, in particolare un’autorità di controllo non elevata in presenza di flussi ad alta velocità. In questo lavoro sperimentale, svolto al Politecnico di Milano e all’Institut PPrime, a Poitiers, viene eseguita una caratterizzazione di attuatori al plasma, sia corona sia DBD (dielectric barrier discharge, ovvero scarica con barriera dielettrica), con geometria multi-punta, cioé con punte triangolari sugli elettrodi attivi. Questa geometria era già stata introdotta per i DBD in alcuni lavori di letteratura, anche se una vera e propria ottimizzazione della geometria non era mai stata eseguita, mentre è innovativa per i corona. In primo luogo, la velocità indotta da 30 diversi attuatori viene confrontata al banco, con lo scopo di individuare una geometria ottimale per le punte. In secondo luogo, gli stessi attuatori sono applicati su un profilo NACA0015 in galleria del vento, per un problema di controllo della separazione, in cui le prestazioni degli attuatori sono valutate in termini di modifiche ai cofficienti di portanza e resistenza, misurati tramite una bilancia appositamente realizzata per l’esperimento. Sia l’attuazione stazionaria sia quella instazionaria sono investigate. Quest’ultima, che consiste in un segnale di tensione sinusoidale modulato con un’onda quadra, è innovativa in questa forma per gli attuatori a corona; varie combinazioni di frequenza ridotta (di modulazione) e duty cycle vengono esplorate. Infine, un DBD e un corona multi-punta sono selezionati e profondamente caratterizzati attraverso misure della potenza consumata, fotografie ICCD della scarica al banco e velocimetria ad immagini di particelle (PIV) risolta nel tempo con gli attuatori installati sul profilo NACA0015 in galleria del vento, in modo da acquisire una conoscenza più approfondita dei meccanismi di controllo. Le varie campagne sperimentali permettono di caratterizzare il flusso indotto da questi attuatori e il loro comportamento in un problema di controllo della separazione su un profilo aerodinamico. Geometrie e combinazioni di parametri elettrici ottimali sono individuate. Le punte incrementano la velocità indotta e le prestazioni di controllo del flusso rispetto alle configurazioni tradizionali “lineari” (senza punte). Per gli attuatori a corona, la stabilità di scarica, una delle principali limitazioni di questi dispositivi, viene notevolmente migliorata dall’utilizzo di punte acuminate (e dall’attuazione instazionaria), mentre per i DBD le punte promuovono la creazione di strutture vorticose che possono aumentare l’autorità di controllo. L’attuazione stazionaria è la miglior scelta in stallo leggero, mentre l’attuazione instazionaria con frequenza ridotta unitaria dà le migliori prestazioni (in termini di incremento di portanza) in stallo profondo. L’efficienza degli attuatori a corona multi-punta è un’ordine di grandezza maggiore rispetto ai DBD, grazie a un consumo di potenza elettrica decisamente inferiore.
Optimization of plasma actuators for flow control
MESSANELLI, FEDERICO
Abstract
Plasma actuators are a rather innovative technology to perform flow control, that can be applied to a wide variety of problems including noise and drag reduction, flow separation and laminar-turbulent transition control. Despite numerous advantages compared to equivalent techniques, including the low weight, the ease of realization, the possibility to retrofit them on already existing surfaces and a fast response time, they still require optimization and further study to overcome some limitations, and in particular a low control authority for high speed flows. In this experimental work, performed at Politecnico di Milano and at the Institut PPrime, Poitiers, a characterization of plasma actuators, both corona and DBD (dielectric barrier discharge) types, with multi-tip geometry, that means with triangular tips on the active electrodes, is carried out. This geometry was already introduced in some literature works for the DBD, even though a proper optimization was lacking, whereas it is innovative for surface corona actuators. First, the velocity induced by 30 different actuators at the bench is compared, in order to find an optimal geometry for the tips. Second, the same actuators are applied on a NACA0015 airfoil in the wind tunnel, for a separation control problem, where the actuators performances are evaluated in terms of lift and drag coefficients modifications, measured with an appositely built balance. Both steady and unsteady actuation are explored. The latter, consisting in a burst modulated sinusoidal voltage, is innovative for corona actuators and different combinations of reduced frequency and duty cycle are investigated. Third, one multi-tip DBD and one multi-tip corona are selected and deeply characterized by means of power measurements, ICCD (intensified charge coupled device) photographs of the discharge at the bench and time-resolved PIV (particle image velocimetry) of the flow when they are applied on a NACA0015 airfoil in the wind tunnel, in order to gain a better insight of the control process. The various experimental campaigns allow to characterize the flow induced by these actuators and their behavior in a separation control problem on an airfoil. Optimal geometries and combinations of electrical parameters are individuated. The tips increase the induced velocity and the control performances with respect to traditional straight configurations, at the price of a larger power consumption for equal input voltage. For the corona actuators, the discharge stability, one of the main weaknesses of these devices, is remarkably improved by sharp tips (and unsteady actuation), whereas for DBD the tips promote the creation of vortical structures that can increase the control authority. Steady actuation is to be preferred in light stall, whereas unsteady actuation, with a reduced frequency in the order of the unity, gives the highest lift increase in deep stall. The efficiency of multi-tip corona devices is one order of magnitude larger than for DBD, thanks to their lower power consumption.File | Dimensione | Formato | |
---|---|---|---|
thesis.pdf
Open Access dal 11/01/2019
Descrizione: Testo della tesi
Dimensione
48.21 MB
Formato
Adobe PDF
|
48.21 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/137301