Conservation of Cultural Heritage is a key issue and structural changes and damages can influence the mechanical behaviour of artefacts and buildings. The use of Finite Elements Methods (FEM) for mechanical analysis is largely used in modelling stress behaviour. The typical workflow involves the use of CAD 3D models made by Non-Uniform Rational B-splines (NURBS) surfaces, representing the ideal shape of the object to be simulated. The use of Finite Elements Analysis (FEA) for ancient structures and artefacts has recently shown great potentialities. For Cultural Heritage objects, altered by the time passed since their original creation, the representation with a schematic CAD model may introduce an excessive level of approximation leading to wrong simulation results. Nowadays, 3D documentation of CH has been widely developed through reality-based approaches, but the models are not suitable for a direct use in FEA: the mesh has in fact to be converted to volumetric, and the density has to be reduced since the computational complexity of a FEA grows exponentially with the number of nodes. The focus of this thesis is to present a new method aiming at generate the most accurate 3D representation of a real artefact from highly accurate 3D digital models derived from reality-based techniques, maintaining the accuracy of the high-resolution polygonal models in the solid ones. The approach proposed is based on a wise use of retopology procedures and a transformation of this model to a mathematical one made by NURBS surfaces suitable for being processed by volumetric meshes typically embedded in standard FEM packages. The strong simplification with little loss of consistency possible with the retopology step is used for maintaining as much coherence as possible between the original acquired mesh and the simplified model, creating in the meantime a topology that is more favourable for the automatic NURBS conversion. This allows to obtain FEA results that are closer to the actual mechanical behaviour of the analysed heritage asset.
La conservazione dei beni culturali è una questione chiave e cambiamenti strutturali e danni possono influenzare il comportamento statico di manufatti e edifici. L'uso dei metodi agli elementi finiti (FEM) per l'analisi meccanica è ampiamente utilizzato nella modellizzazione del comportamento da stress. Il flusso di lavoro tipico prevede l'utilizzo di modelli CAD 3D realizzati con superfici Non-Uniform B-Splines (NURBS), che rappresentano la forma ideale dell'oggetto da simulare. L'utilizzo dell'analisi degli elementi finiti (FEA) per strutture e manufatti antichi ha recentemente dimostrato grandi potenzialità. Per gli oggetti del patrimonio culturale, modificati dal tempo trascorso dalla loro creazione originale, la rappresentazione con un modello CAD schematico può introdurre un eccessivo livello di approssimazione che porta a risultati di simulazione errati. Al giorno d'oggi, la documentazione 3D di Beni Culturali è stata ampiamente sviluppata attraverso approcci reality-based, ma i modelli non sono adatti per un uso diretto nelle analisi a elementi finiti: la mesh deve infatti essere convertita in volumetrico, e la densità deve essere ridotta dato che la complessità delle analisi FEA cresce esponenzialmente con il numero di nodi della mesh. Il focus di questa tesi è quello di presentare un nuovo metodo per generare la rappresentazione 3D più accurata di un artefatto da modelli digitali 3D altamente accurati derivati da tecniche reality-based, mantenendo l'accuratezza dei modelli poligonali ad alta risoluzione in quelli solidi. L'approccio proposto si basa su un saggio uso delle procedure di retopology e una trasformazione di questo modello in una superficie matematica fatta da superfici NURBS adatta per essere elaborata da dai normali pacchetti FEM. La forte semplificazione con poca perdita di coerenza possibile con la fase di retopology viene utilizzata per mantenere la massima coerenza possibile tra la mesh acquisita originariamente e il modello semplificato, creando nel frattempo una topologia più favorevole per la conversione automatica in NURBS. Ciò consente di ottenere risultati FEA più vicini all'effettivo comportamento meccanico del patrimonio culturale analizzato.
Structural investigation of cultural heritage through FEA on reality based models originated by 3D digitization
GONIZZI BARSANTI, SARA
Abstract
Conservation of Cultural Heritage is a key issue and structural changes and damages can influence the mechanical behaviour of artefacts and buildings. The use of Finite Elements Methods (FEM) for mechanical analysis is largely used in modelling stress behaviour. The typical workflow involves the use of CAD 3D models made by Non-Uniform Rational B-splines (NURBS) surfaces, representing the ideal shape of the object to be simulated. The use of Finite Elements Analysis (FEA) for ancient structures and artefacts has recently shown great potentialities. For Cultural Heritage objects, altered by the time passed since their original creation, the representation with a schematic CAD model may introduce an excessive level of approximation leading to wrong simulation results. Nowadays, 3D documentation of CH has been widely developed through reality-based approaches, but the models are not suitable for a direct use in FEA: the mesh has in fact to be converted to volumetric, and the density has to be reduced since the computational complexity of a FEA grows exponentially with the number of nodes. The focus of this thesis is to present a new method aiming at generate the most accurate 3D representation of a real artefact from highly accurate 3D digital models derived from reality-based techniques, maintaining the accuracy of the high-resolution polygonal models in the solid ones. The approach proposed is based on a wise use of retopology procedures and a transformation of this model to a mathematical one made by NURBS surfaces suitable for being processed by volumetric meshes typically embedded in standard FEM packages. The strong simplification with little loss of consistency possible with the retopology step is used for maintaining as much coherence as possible between the original acquired mesh and the simplified model, creating in the meantime a topology that is more favourable for the automatic NURBS conversion. This allows to obtain FEA results that are closer to the actual mechanical behaviour of the analysed heritage asset.File | Dimensione | Formato | |
---|---|---|---|
THESIS_Gonizzi.pdf
accessibile in internet per tutti
Dimensione
39.5 MB
Formato
Adobe PDF
|
39.5 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/137311