This writing focuses on the investigation of the ageing behaviour of aluminium powders in solid rocket propellants. Three different powders, with nominal particle sizes of 30 μm (μAl-30), 7.5 μm (μAl-7.5) and 100 nm (nAl-100), were considered. Three propellants (14 wt-% HTPB, 68 wt-% AP, 18 wt-% Al) were manufactured with different fuel loadings. One propellant was manufactured partially replacing 16.7 % μAl-30 with nAl-100. Lab-scale specimens were subjected to accelerated ageing at two temperatures (30C and 60C) and two relative humidities (RH ≤ 10 % and 80 %) for a continued period of 40 days. The diffusion of water through a lab-scale propellant sample was modelled using the diffusion equation. The diffusion coefficient of water through a composite solid propellant was determined experimentally. Numerical simulations were carried out to assess the time required for the water content inside lab-scale propellant samples to plateau with zero initial conditions and Dirichlet boundary conditions. Latency periods were confirmed experimentally by sample weight measurements. Active aluminium content (C_Al) measurements were carried out on unaged and aged propellant samples using the volumetric method. Burning rate (r_b) measurements were carried out using a vertical strand burner under nitrogen removal conditions at three pressure levels (10 bar, 30 bar, 50 bar). Metal contents were found to be unaffected by accelerated ageing under dry conditions at all investigated temperatures and under humid conditions at 30C. The active aluminium content of a partially nano-aluminized propellant was found to drop from 97.2 % to 83.1 % after ageing at 60C and 80 % RH. Specific impulse (I_s) losses were evaluated using NASA’s CEA code. It is conjectured that nAl-100 is completely consumed during the 40-day humid ageing period at 60C. The partial replacement of μAl-30 with nAl-100 afforded substantial r_b increases over all investigated chamber pressures in the unaged propellant case and in all investigated ageing environments but the 60C, 80 % RH combination, where r_b were found to fall below that of the 30-μm propellant. Due to its greater specific surface area, burning rates of a 7.5-μm propellant were found to be greater than those of a 30-μm propellant in all investigated conditions. From r_b measurements, it could not be concluded whether humid ageing at 30C or dry ageing at 60C subjects the samples to more severe degradation. Vieille-de-Saint-Robert law parameters were fitted to the observed data. Pressure exponents of the micro-aluminized propellants were found to be unaffected by ageing. A fourth propellant was manufactured replacing 16.7 % of μAl-30 with aluminium oxide (Al2O3) to compare its r_b with that of the partially nano-aluminized propellant after ageing at 60 and 80 % RH and found to be slightly larger.
Il presente scritto riguarda l’invecchiamento di propellenti solidi per razzi. Sono stati prodotti tre propellenti con combustibili diversi (14 % HTPB, 68 % AP, 18 % Al, percentuali di peso). Sono stati analizzati tre tipi di polveri combustibili con diametri nominali di 30 μm (μAl-30), 7.5 μm (μAl-7.5) e 100 nm (nAl-100). Provini in scala di laboratorio sono stati soggetti ad invecchiamento accelerato a due temperature (30C e 60C ) e umidità relative diverse (UR ≤ 10 % e 80 %) per un periodo continuato di 40 giorni. La diffusione di acqua attraverso un provino in scala di laboratorio è stata modellizzata con l’equazione della diffusione. Il coefficiente di diffusione dell’acqua attraverso il provino è stato determinato sperimentalmente. Sono state fatte simulazioni numeriche con condizioni iniziali nulle e condizioni al contorno di Dirichlet per stabilire il tempo necessario perché la concentrazione di acqua all’interno diventi stazionaria. I tempi di latenza sono stati verificati sperimentalmente per via di misure di peso. Il contenuto attivo di alluminio (C_Al) è stato determinato col metodo volumetrico. Sono state effettuate misure di velocità di combustione (r_b) sotto condizioni di rimozione ad azoto a tre livelli di pressione (10 bar, 30 bar, 50 bar). I contenuti di alluminio attivo non sono stati interessati dall’invecchiamento in condizioni di secco sia a 30C che a 60C, e di umido a 30C. Il contenuto di alluminio attivo del propellente a rimpiazzamento parziale di nano-alluminio è sceso da ca. 97.2 % a 83.1 % durante l’invecchiamento a 60C e 80 % UR. Le perdite di impulso specifico (Is) sono state valutate usando il codice NASA CEA. Si congettura che nAl-100 sia completamente esausto durante i 40 giorni di invecchiamento ad umido a 60C. Il rimpiazzamento di μAl-30 con nAl-100 ha permesso di aumentare sostanzialmente le r_b a tutte le pressioni considerate, sia nel caso non invecchiato che in tutti i casi invecchiati, fatta eccezione della combinazione 60C, 80 % UR. In questo caso, le r_b del propellente parzialmente nano-aluminizzato riscontrate sono inferiori di quelle del propellente a 30 μm. Grazie alla maggiore superficie specifica, il propellente a 7.5 μm ha esibito r_b maggiori di quelle del propellente a 30 μm. Dalle misure di r_b non è stato possibile concludere se l’invecchiamento a umido a 30 è più gravoso di quello a secco a 60 . Sono stati adattati i parametri della legge di Vieille-de-Saint-Robert. Gli esponenti di pressione delle formulazioni a micro-alluminio non sono stati interessati dall’invecchiamento. Si è prodotto un quarto propellente rimpiazzando il 16.7 % di μAl-30 con ossido di alluminio (Al2O3) per compararne le r_b con quelle del propellente parzialmente nano-alluminizzato invecchiato in umido a 60C.
Storage sensitivity of aluminium powders in solid propellants : an explorative analysis
VASSALLO, GIORGIO
2016/2017
Abstract
This writing focuses on the investigation of the ageing behaviour of aluminium powders in solid rocket propellants. Three different powders, with nominal particle sizes of 30 μm (μAl-30), 7.5 μm (μAl-7.5) and 100 nm (nAl-100), were considered. Three propellants (14 wt-% HTPB, 68 wt-% AP, 18 wt-% Al) were manufactured with different fuel loadings. One propellant was manufactured partially replacing 16.7 % μAl-30 with nAl-100. Lab-scale specimens were subjected to accelerated ageing at two temperatures (30C and 60C) and two relative humidities (RH ≤ 10 % and 80 %) for a continued period of 40 days. The diffusion of water through a lab-scale propellant sample was modelled using the diffusion equation. The diffusion coefficient of water through a composite solid propellant was determined experimentally. Numerical simulations were carried out to assess the time required for the water content inside lab-scale propellant samples to plateau with zero initial conditions and Dirichlet boundary conditions. Latency periods were confirmed experimentally by sample weight measurements. Active aluminium content (C_Al) measurements were carried out on unaged and aged propellant samples using the volumetric method. Burning rate (r_b) measurements were carried out using a vertical strand burner under nitrogen removal conditions at three pressure levels (10 bar, 30 bar, 50 bar). Metal contents were found to be unaffected by accelerated ageing under dry conditions at all investigated temperatures and under humid conditions at 30C. The active aluminium content of a partially nano-aluminized propellant was found to drop from 97.2 % to 83.1 % after ageing at 60C and 80 % RH. Specific impulse (I_s) losses were evaluated using NASA’s CEA code. It is conjectured that nAl-100 is completely consumed during the 40-day humid ageing period at 60C. The partial replacement of μAl-30 with nAl-100 afforded substantial r_b increases over all investigated chamber pressures in the unaged propellant case and in all investigated ageing environments but the 60C, 80 % RH combination, where r_b were found to fall below that of the 30-μm propellant. Due to its greater specific surface area, burning rates of a 7.5-μm propellant were found to be greater than those of a 30-μm propellant in all investigated conditions. From r_b measurements, it could not be concluded whether humid ageing at 30C or dry ageing at 60C subjects the samples to more severe degradation. Vieille-de-Saint-Robert law parameters were fitted to the observed data. Pressure exponents of the micro-aluminized propellants were found to be unaffected by ageing. A fourth propellant was manufactured replacing 16.7 % of μAl-30 with aluminium oxide (Al2O3) to compare its r_b with that of the partially nano-aluminized propellant after ageing at 60 and 80 % RH and found to be slightly larger.File | Dimensione | Formato | |
---|---|---|---|
tesi.pdf
solo utenti autorizzati dal 07/12/2020
Descrizione: Thesis text
Dimensione
7.25 MB
Formato
Adobe PDF
|
7.25 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/137343