Silicon Photon Multipliers (SiPMs) are promising, extremely sensitive, optical detectors for many scientific and industrial applications and their development and deployment are growing worldwide. Among different technologies available for photon counting and photon timing (mostly known as time-correlated single photon counting), single photon detectors based on avalanche diode structures (SiPMs and SPADs) are frequently the best choice for applications requiring not only high performance, but also high reliability and ease of implementation. In particular, excellent photon detection efficiency combined with large collection area make SiPMs optimal sensors for single photon detection. SiPM can be designed to act as either digital or analog devices, depending on application. The availability of an analog output signal, proportional to the number of simultaneous firing microcells, allows to discriminate the number of photons impinging simultaneously on the device, thus making SiPMs useful detectors for photon-number resolved applications. In order to successfully exploit SiPMs in real applications, an analog electronic front-end circuitry able to amplify and process the signal is required. The main objectives of this thesis work were to introduce the key features and applications of SiPMs; to present the preliminary characterization of the SiPM designed at SPADLab and explain the need for broadband amplifiers as readout circuitry, also describing the specific transimpedence amplifiers employed for this very purpose; an explanation and discussion about the experimental measurements on timing and success probability that were performed concludes the thesis.
I Silicon Photomultipliers (SiPM) sono dei promettenti rivelatori ottici per un gran numero di applicazioni scientifiche e industriali, motivo per cui il loro sviluppo e la loro distribuzione sono in crescita in tutto il mondo. Tra le diverse tecnologie disponibili per il photon-counting e photon-timing (noto come Time Correlated Single Photon Counting), i rivelatori a singolo fotone basati su strutture di tipo diodo a valanga (SiPM e SPAD) si dimostrano spesso la scelta migliore per le applicazioni che richiedono non solo alte prestazioni, ma anche elevata affidabilità e facilità di implementazione. In particolare, un’eccellente efficienza di rivelazione, combinata con un’ampia area di raccolta rendono i SiPM ottimi sensori per la rilevazione di singoli fotoni. I SiPM trovano impiego sia come dispositivi analogici che digitali, a seconda dell’applicazione. La disponibilità di un segnale di uscita analogico, proporzionale al numero di microcelle simultaneamente attive, permette di discriminare il numero di fotoni che colpiscono simultaneamente il dispositivo. Questo è un prerequisito indispensabile in applicazioni photon-number resolved, uno degli ambiti in cui i SiPM trovano maggiore applicazione. Per sfruttare efficacemente i SiPM in questo contesto, sono richiesti circuiti di lettura analogici in grado di amplificare ed elaborare il segnale. L’obiettivo principale di questa tesi è quello di esporre le principali caratteristiche e applicazioni dei SiPM; presentare la caratterizzazione preliminare dei SiPM SPADLab utilizzati e la conseguente necessità di utilizzare amplificatori a banda larga come circuiti di readout, descrivendo inoltre gli specifici amplificatori a transimpedenza utilizzati; il lavoro è concluso dalla presentazione delle misure di timing e validazione di simulazioni effettuate.
CMOS and BCD SiPMs readout circuit : design and characterization
ROMEO, EDOARDO
2016/2017
Abstract
Silicon Photon Multipliers (SiPMs) are promising, extremely sensitive, optical detectors for many scientific and industrial applications and their development and deployment are growing worldwide. Among different technologies available for photon counting and photon timing (mostly known as time-correlated single photon counting), single photon detectors based on avalanche diode structures (SiPMs and SPADs) are frequently the best choice for applications requiring not only high performance, but also high reliability and ease of implementation. In particular, excellent photon detection efficiency combined with large collection area make SiPMs optimal sensors for single photon detection. SiPM can be designed to act as either digital or analog devices, depending on application. The availability of an analog output signal, proportional to the number of simultaneous firing microcells, allows to discriminate the number of photons impinging simultaneously on the device, thus making SiPMs useful detectors for photon-number resolved applications. In order to successfully exploit SiPMs in real applications, an analog electronic front-end circuitry able to amplify and process the signal is required. The main objectives of this thesis work were to introduce the key features and applications of SiPMs; to present the preliminary characterization of the SiPM designed at SPADLab and explain the need for broadband amplifiers as readout circuitry, also describing the specific transimpedence amplifiers employed for this very purpose; an explanation and discussion about the experimental measurements on timing and success probability that were performed concludes the thesis.File | Dimensione | Formato | |
---|---|---|---|
2017_12_Romeo.pdf
non accessibile
Dimensione
3.04 MB
Formato
Adobe PDF
|
3.04 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/137384