Cellular supports (Open Cell Foams and Periodic Open Cellular Structures – POCS) made of conductive metals are being considered as novel enhanced catalyst supports due to their excellent heat transfer properties, which may overcome many limitations of state of the art fixed bed reactors. These aspects are currently under investigation in an ERC grant awarded to Prof. E. Tronconi - Grant Agreement no. 694910 (INTENT) - aimed at the intensification of heat transfer in tubular reactors by highly conductive internals. Numerical models developed and results collected in this thesis work will enable the evaluation of the proper geometries for highly exo or endo-thermic applications. The aim of this work is to investigate experimentally and numerically the heat transfer properties of these novel catalyst supports. In particular, the main focus of the work is the development of a heterogeneous heat transfer model, because in some particular conditions, the pseudo-homogeneous model typically presented in the literature may not be accurate. In this thesis work, different metallic structures –which are highly conductive supports in Aluminum– were tested. These structures included both Open Cell Foams and POCS. The first one was produced by ERG-Duocel while POCS were produced by University of Salento. Metallic foams were studied in two conditions: sintered to the reactor wall and not sintered. The observed differences between these two cases helped to investigate, qualitatively and quantitatively, the effect of thermal continuity between these structured catalyst substrates and the reactor tube wall. The experimental section of this work was dedicated to studying heat transfer in a tubular reactor packed with Open Cellular Metallic Structures, in a non-reacting system. For this part, a test rig previously employed at the Laboratory of Catalysis and Catalytic Processes, Department of Energy, Politecnico di Milano was used. The tests were run using Nitrogen and Helium gases at different oven temperatures and feed flowrates. For the numerical modelling part, a numerical model was developed to predict heat transfer properties. In the literature and in previous thesis works, the modeling of heat transfer performances of such structures is based on pseudo-homogeneous approaches, which consider the whole system as a single phase. In this research work, instead, numerical modelling was performed using both pseudo-homogeneous and heterogeneous models to obtain a more comprehensive understanding of the heat transfer behavior of these novel catalyst substrates. For highly conductive supports, characterized by low cell density, the heterogeneous model is more suitable to predict the temperature profiles because the dominant heat transfer resistance is located just at the gas-solid interface.
I supporti cellulari (schiume a celle aperte e strutture cellulari periodiche a cella aperta - POCS) sono considerati supporti catalitici avanzati per le loro proprietà di trasferimento di calore e possono superare molte delle limitazioni dei reattori a letto fisso allo stato dell'arte. Questi aspetti sono attualmente oggetto di indagine in una finanziamento ERC assegnato al Prof. E. Tronconi - Grant n. 694910 (INTENT) - mirato all'intensificazione di trasferimento di calore in reattori tubolare mediante inserti altamente conduttivi. I modelli numerici sviluppati e i risultati raccolti in questo lavoro di tesi consentiranno la valutazione delle geometrie appropriate per applicazioni altamente eso o endo-termiche. Lo scopo di questo lavoro è quello di esaminare, sia a livello sperimentale che a livello numerico, le proprietà di trasferimento di calore di questi nuovi supporti catalitici. In particolare, l'obiettivo principale del lavoro è lo sviluppo di scambio termico eterogeneo, perché, in alcune condizioni particolari, modelli pseudo-omogenei presenti in letteratura perde in accuratezza. In questa tesi sono state testate diverse strutture metalliche, supporti altamente conduttivi in alluminio. Sono state testate sia schiume a celle aperte sia POCS; la schiuma di alluminio è stata prodotta da ERG-Duocel mentre i POCS sono stati prodotti dall'Università del Salento. Le schiume metalliche sono state studiate in due condizioni: sinterizzate alla parete del reattore e non sono sinterizzate. Queste due configurazioni hanno permesso di indagare, qualitativamente e quantitativamente, l'effetto della sinterizzazione sulle performances di scambio termico. La sezione sperimentale di questo lavoro è stata dedicata allo studio del trasferimento di calore in un reattore tubolare riempito con strutture cellulari metalliche in condizioni non reattive. Per questa parte è stato utilizzato un banco di prova precedentemente utilizzato nel gruppo LCCP - Laboratori di Catalisi e Processi Catalitici del Dipartimento di Energia. I test sono stati condotti in azoto ed elio a diverse temperature di forno e con diverse portate fluenti. Per la parte di modellazione numerica, è stato sviluppato un modello numerico per prevedere le proprietà di trasferimento di calore. In letteratura e nelle tesi precedenti la modellizzazione delle prestazioni di scambio termico di queste strutture è stata eseguita con modelli pseudo-omogenei che considerano l'intero sistema come una singola fase. In questo lavoro di tesi, invece, la modellazione numerica è stata eseguita con entrambi modelli pseudo-omogenei ed eterogenei per ottenere una comprensione più completa sul comportamento di trasferimento di calore di questi nuovi catalizzatori strutturati. Per supporti altamente conduttivi caratterizzati da bassa densità cellulare, il modello eterogeneo è in grado di prevedere i profili di temperatura poiché la resistenza dominante al trasferimento di calore è il coefficiente di trasferimento termico interfacciale gas-solido.
Experimental and numerical investigation of heat transport phenomena in metallic open cellular structures in catalytic applications
NABAVI, ELNAZ SADAT;MADANIKASHANI, SEPEHR
2016/2017
Abstract
Cellular supports (Open Cell Foams and Periodic Open Cellular Structures – POCS) made of conductive metals are being considered as novel enhanced catalyst supports due to their excellent heat transfer properties, which may overcome many limitations of state of the art fixed bed reactors. These aspects are currently under investigation in an ERC grant awarded to Prof. E. Tronconi - Grant Agreement no. 694910 (INTENT) - aimed at the intensification of heat transfer in tubular reactors by highly conductive internals. Numerical models developed and results collected in this thesis work will enable the evaluation of the proper geometries for highly exo or endo-thermic applications. The aim of this work is to investigate experimentally and numerically the heat transfer properties of these novel catalyst supports. In particular, the main focus of the work is the development of a heterogeneous heat transfer model, because in some particular conditions, the pseudo-homogeneous model typically presented in the literature may not be accurate. In this thesis work, different metallic structures –which are highly conductive supports in Aluminum– were tested. These structures included both Open Cell Foams and POCS. The first one was produced by ERG-Duocel while POCS were produced by University of Salento. Metallic foams were studied in two conditions: sintered to the reactor wall and not sintered. The observed differences between these two cases helped to investigate, qualitatively and quantitatively, the effect of thermal continuity between these structured catalyst substrates and the reactor tube wall. The experimental section of this work was dedicated to studying heat transfer in a tubular reactor packed with Open Cellular Metallic Structures, in a non-reacting system. For this part, a test rig previously employed at the Laboratory of Catalysis and Catalytic Processes, Department of Energy, Politecnico di Milano was used. The tests were run using Nitrogen and Helium gases at different oven temperatures and feed flowrates. For the numerical modelling part, a numerical model was developed to predict heat transfer properties. In the literature and in previous thesis works, the modeling of heat transfer performances of such structures is based on pseudo-homogeneous approaches, which consider the whole system as a single phase. In this research work, instead, numerical modelling was performed using both pseudo-homogeneous and heterogeneous models to obtain a more comprehensive understanding of the heat transfer behavior of these novel catalyst substrates. For highly conductive supports, characterized by low cell density, the heterogeneous model is more suitable to predict the temperature profiles because the dominant heat transfer resistance is located just at the gas-solid interface.File | Dimensione | Formato | |
---|---|---|---|
2017_12_NABAVI_MADANIKASHANI.pdf
Open Access dal 05/12/2018
Descrizione: Thesis text
Dimensione
6.63 MB
Formato
Adobe PDF
|
6.63 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/137419