Spinal cord injury (SCI) is an invalidating disease that involves the damage of the spinal cord or the nerves connecting the spinal column to the central and peripheral nervous system. The activation of microglia/macrophages, which characterizes the inflammatory response, is a self-propelling mechanism responsible of progressive neurodegeneration and persisting pain state. The possibility to intervene modulating the inflammatory response through the release of drugs in the damaged zone, represents a promising therapeutic action. Recent studies in polymer science and nanotechnology highlighted an increased interest for a new class of colloidal systems, called nanogels (NGs), as carriers of drugs or bioactive compounds to treat SCI. In this thesis work, various polymer functionalization strategies have been proposed in order to synthetize nanogels able to be internalized in different ways from the cells involved in the inflammatory response of SCI. Nanogels synthetized were composed by polyethylene glycol (PEG) and polyethylene imine (PEI) conjugated with a chromophore through a “click” reaction in order to monitor the nanosized structure during cellular uptake tests. The first functionalization strategy involved the synthesis of two different coating layers using PEG mono-methyl ether (mPEG) modified in correspondence of its terminal hydroxyl group. This procedure demonstrated to improve the internalization of nanogels from microglia by making these systems promising drug carriers within microglia environment. Therefore, the kinetics of release of two drug mimetics from PEG based-coating nanogels was evaluated showing that only one type of modified mPEG coating was able to slow down the rate of drug release. The second functionalization strategy, instead, involved the synthesis of coating layers with amino moieties, with the attempt to reduce the uptake from microglia. In vitro tests showed that this behavior was verified highlighting the powerful of polymer functionalization strategies.
La lesione spinale è un trauma in grado di provocare una significativa disabilità dovuta al danneggiamento del midollo spinale o dei nervi che collegano la colonna vertebrale al sistema nervoso centrale e periferico. L’attivazione di microglia/macrofagi, che caratterizza la risposta infiammatoria, è responsabile dell’aggravamento della malattia stessa. La possibilità di intervenire modulando l’attivazione della risposta infiammatoria attraverso il rilascio di sostanze protettive nella zona danneggiata, rappresenta un potenziale approccio terapeutico. Studi recenti sulla scienza dei polimeri e sulla nanotecnologia hanno aumentato l’interesse verso una nuova classe di sistemi colloidali, i nanogeli, al fine di utilizzarli come trasportatori di farmaci o di composti bioattivi nel trattamento della lesione spinale. In questo lavoro di tesi sono state proposte differenti strategie di funzionalizzazione polimerica al fine di ottenere nanogeli in grado di essere diversamente internalizzati dalle cellule coinvolte nella risposta infiammatoria della lesione spinale. I nanogeli sono stati sintetizzati da polietilene glicole (PEG) e polietilene immina lineare (PEI), legando quest’ultimo polimero a un cromoforo tramite una reazione di “click” per garantire il tracciamento dei nanogeli nei i test cellulari. La prima strategia di funzionalizzazione, che ha portato alla sintesi di due diversi tipi di rivestimento utilizzando polietilene glicole metil etere (mPEG) modificato in corrispondenza del gruppo idrossile, ha dimostrato di migliorare l’internalizzazione dei nanogeli da parte delle microglia rendendoli potenziali trasportatori di farmaco all’interno di queste cellule. Si è quindi deciso di esaminare la cinetica di rilascio di due farmaci mimetici dai due sistemi rivestiti con mPEG modificato dimostrando che solo uno dei due rivestimenti è in grado di rallentare la cinetica di rilascio. La seconda strategia di funzionalizzazione, invece, è stata realizzata legando chimicamente gruppi amminici ai nanogeli per ridurre l’internalizzazione cellulare. Test biologici in vitro hanno confermato tale risultato sottolineando la potenzialità della funzionalizzazione polimerica.
Tuning nanogels-cell selectivity using different functionalization strategies
CAPPELLA, FABRIZIA
2016/2017
Abstract
Spinal cord injury (SCI) is an invalidating disease that involves the damage of the spinal cord or the nerves connecting the spinal column to the central and peripheral nervous system. The activation of microglia/macrophages, which characterizes the inflammatory response, is a self-propelling mechanism responsible of progressive neurodegeneration and persisting pain state. The possibility to intervene modulating the inflammatory response through the release of drugs in the damaged zone, represents a promising therapeutic action. Recent studies in polymer science and nanotechnology highlighted an increased interest for a new class of colloidal systems, called nanogels (NGs), as carriers of drugs or bioactive compounds to treat SCI. In this thesis work, various polymer functionalization strategies have been proposed in order to synthetize nanogels able to be internalized in different ways from the cells involved in the inflammatory response of SCI. Nanogels synthetized were composed by polyethylene glycol (PEG) and polyethylene imine (PEI) conjugated with a chromophore through a “click” reaction in order to monitor the nanosized structure during cellular uptake tests. The first functionalization strategy involved the synthesis of two different coating layers using PEG mono-methyl ether (mPEG) modified in correspondence of its terminal hydroxyl group. This procedure demonstrated to improve the internalization of nanogels from microglia by making these systems promising drug carriers within microglia environment. Therefore, the kinetics of release of two drug mimetics from PEG based-coating nanogels was evaluated showing that only one type of modified mPEG coating was able to slow down the rate of drug release. The second functionalization strategy, instead, involved the synthesis of coating layers with amino moieties, with the attempt to reduce the uptake from microglia. In vitro tests showed that this behavior was verified highlighting the powerful of polymer functionalization strategies.File | Dimensione | Formato | |
---|---|---|---|
2017_12_Cappella.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
11.92 MB
Formato
Adobe PDF
|
11.92 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/137458