This thesis describes the development of a LPV control with the purpose of damping the vibration of 2-link flexible manipulators. Because of the reduced structural stiffeness of this kind of manipulators, the number of scientific research projects in the field was increased in the last few decades. Hence for specific applications with need of ligthweigth, maneuverable robots, and with highly precise performances, it is very desirable to build flexible robotic manipulators. From one side, this structure let us gain many advantages, such as lower energy consumption, lower costs and reduced inertia, but from the other side it increases the control problem complexity. As a matter of fact, flexible manipulators show a complex dynamic behaviour, due to the combination of different dynamics: a slower dynamic can be observed, determined by the rigid motion, and a faster one, highlighted by high frequency vibrations of the links. For this reason the proposed method is based on two-scale control, i.e. we develope a control scheme which implements two separate control designs. The first issue is the dynamic modelling in closed-form of the manipulator by means of Newton-Euler method. Starting from this model a reduced model has been carried out by the integral manifold approach. The so called off-manifold model describes the fast dynamics of the manipulator. Morever, it can be observed that the off-manifold model shows a linear parameter varying structure, which is the reason why LPV control theory has been adopted in this thesis. LPV control law has been analyzed and implemented for off-manifold model and for closed-form dynamic model. The resulting control scheme implements two control laws, one for rigid motion tracking and one for vibration damping, according to composite control theory.
In questo lavoro di tesi si propone un controllo LPV per lo smorzamento delle vibrazioni di un manipolatore a 2-link flessibile. La ridotta rigidezza strutturale di questo tipo di manipolatori ha suscitato negli ultimi decenni molto interesse. Infatti questi robot trovano una collocazione in applicazioni che richiedono manipolatori leggeri, di facile manovrabilità e di estrema precisione. Questa architettura da un lato comporta svariati vantaggi, quali minor consumo energetico, minori costi e ridotte inierzie, ma dall'altro incrementa la complessità del problema di controllo. Essi presentano un comportamento dinamico complesso, determinato dalla combinazione di più dinamiche: in particolare si riconosce una dinamica lenta che determina il movimento rigido, ed una dinamica veloce, messa in luce da vibrazioni dei link ad alta frequenza. Per questo motivo è stato proposto un metodo di controllo su due scale temporali, ossia uno schema di che consenta la progettazione separata di due opportune leggi di controllo. Prima di affrontare il problema del controllo è stato necessario ricavare un modello adeguato del manipolatore. Si è adottato il metodo di Newton-Eulero per ricavare un modello dinamico in forma chiusa. A partire da questo è stato ricavato il modello off-manifold che descrive le dinamiche veloci del manipolatore, mediante l'approccio integral manifold. Si è osservato che quest'ultimo modello presentava una forma lineare a parametri variabili, motivazione per cui è stata selezionata la teoria LPV per la progettazione della legge di controllo veloce. Questa legge LPV è stata quindi analizzata e valutata nel contesto del modello off-manifold e nel contesto del modello dinamico in forma chiusa. Lo schema risultante implementa due leggi di controllo, una lenta progettata sul modello rigido, ed una veloce, in accordo con la teoria del controllo composito.
Sintesi di un regolatore LPV per un manipolatore multi-link
SCIACCA, VERONICA
2016/2017
Abstract
This thesis describes the development of a LPV control with the purpose of damping the vibration of 2-link flexible manipulators. Because of the reduced structural stiffeness of this kind of manipulators, the number of scientific research projects in the field was increased in the last few decades. Hence for specific applications with need of ligthweigth, maneuverable robots, and with highly precise performances, it is very desirable to build flexible robotic manipulators. From one side, this structure let us gain many advantages, such as lower energy consumption, lower costs and reduced inertia, but from the other side it increases the control problem complexity. As a matter of fact, flexible manipulators show a complex dynamic behaviour, due to the combination of different dynamics: a slower dynamic can be observed, determined by the rigid motion, and a faster one, highlighted by high frequency vibrations of the links. For this reason the proposed method is based on two-scale control, i.e. we develope a control scheme which implements two separate control designs. The first issue is the dynamic modelling in closed-form of the manipulator by means of Newton-Euler method. Starting from this model a reduced model has been carried out by the integral manifold approach. The so called off-manifold model describes the fast dynamics of the manipulator. Morever, it can be observed that the off-manifold model shows a linear parameter varying structure, which is the reason why LPV control theory has been adopted in this thesis. LPV control law has been analyzed and implemented for off-manifold model and for closed-form dynamic model. The resulting control scheme implements two control laws, one for rigid motion tracking and one for vibration damping, according to composite control theory.File | Dimensione | Formato | |
---|---|---|---|
2017_12_Sciacca.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
2.41 MB
Formato
Adobe PDF
|
2.41 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/137508