This thesis work is focused on the study of the cryogenic distillation of carbon isotopes, in order to study the performances of the distillation columns that have been built within the “Aria-Project”. The columns have been designed with an excess of trays respect to those necessary for the distillation of argon mixtures, in order to also have the possibility to separate stable isotopes of other molecules having commercial and scientific interest. More precisely, the present thesis work aims at obtaining 13C enriched streams. This isotope finds application in medical diagnostics due to its suitability for magnetic resonance and detection, in particular labelled 13C biomolecules have recently gained a great interest. These molecules are produced providing a 13CO2 enriched stream inside a photo-bioreactor. Actually the cryogenic distillation of carbon dioxide isotopic mixtures cannot be carried out because of the very small relative volatility among CO2 isotopic species. However, there are two molecules for which cryogenic distillation has found practical application in order to obtain 13C enriched products: CO and CH4. For this reason, the very first part of this thesis work has been focused on a comparative study between the distillation of binary isotopic mixtures of carbon monoxide (12CO and 13CO) and methane (12CH4 and 13CH4), in order to determine which of the two mixtures is easier to separate. Computations carried out with short-cut methods have proven that the mixture of carbon monoxide isotopes is the most promising. Consequently, the cryogenic distillation of CO has been analysed more in detail, in particular a multicomponent distillation taking into account a more realistic mixture has been studied. Rigorous methods have been employed for this purpose, through the exploitation of a commercial simulator, Aspen Plus® which has been adapted for the purpose after verifying its reliability by comparison of the results with those available in the literature. Finally the oxidation of 13CO to 13CO2 has been investigated, taking into account two different processes to turn the 13CO2 molecule produced by distillation into 13CO2.
Questo lavoro di tesi riguarda lo studio della distillazione criogenica di miscele isotopiche, al fine di studiare le prestazioni di due colonne esistenti nell’ambito del Progetto Aria. Le colonne sono state progettate con un numero di piatti in eccesso rispetto a quello necessario per ottenere prestazioni soddisfacenti per la separazione di 40Ar, in modo da avere la possibilità di realizzare la separazione di isotopi stabili di altre molecole di interesse da un punto di vista commerciale e scientifico. Più precisamente, lo scopo della tesi consiste nell’ottenimento di un prodotto arricchito in 13C. Questo isotopo trova applicazione nella diagnostica medica: in questo ambito biomolecole tracciate in 13C hanno recentemente acquisito un notevole interesse. Questi composti sono prodotti fornendo una corrente arricchita in 13CO2 ad un foto-bioreattore. La distillazione criogenica di 13CO2 non può essere condotta direttamente a causa delle volatilità relative degli isotopi di diossido di carbonio che risultano troppo basse. Esistono tuttavia due molecole per le quali la distillazione criogenica ha trovato applicazione pratica, col fine di ottenere prodotti arricchiti in 13C: CO e CH4. La prima parte della tesi ha riguardato pertanto, uno studio comparativo tra la distillazione di miscele binarie di monossido di carbonio (12CO e 13CO) e di metano (12CH4 e 13CH4), in modo da determinare quale delle due risulti più semplice da separare. Calcoli condotti con metodi short-cut hanno dimostrato che il monossido di carbonio risulta il più promettente. Si è scelto, quindi, di studiare la distillazione criogenica di CO più nel dettaglio, considerando il caso più generale di una miscela multicomponente. Metodi rigorosi sono stati impiegati per perseguire questo obiettivo, sfruttando un simulatore commerciale, Aspen Plus®, il quale è stato reso idoneo per il caso specifico, previa verifica della sua affidabilità per un confronto dei risultati con esso ottenibili con quelli disponibili in letteratura. Da ultimo sono stati studiati i processi capaci di trasformare 13CO in 13CO2, in modo da ottenere l’anidride carbonica marcata in 13C da alimentare al foto-bioreattore.
Study and simulation of carbon isotopes separation via cryogenic distillation for 13CO2 production
SCACCABAROZZI, MATTEO
2016/2017
Abstract
This thesis work is focused on the study of the cryogenic distillation of carbon isotopes, in order to study the performances of the distillation columns that have been built within the “Aria-Project”. The columns have been designed with an excess of trays respect to those necessary for the distillation of argon mixtures, in order to also have the possibility to separate stable isotopes of other molecules having commercial and scientific interest. More precisely, the present thesis work aims at obtaining 13C enriched streams. This isotope finds application in medical diagnostics due to its suitability for magnetic resonance and detection, in particular labelled 13C biomolecules have recently gained a great interest. These molecules are produced providing a 13CO2 enriched stream inside a photo-bioreactor. Actually the cryogenic distillation of carbon dioxide isotopic mixtures cannot be carried out because of the very small relative volatility among CO2 isotopic species. However, there are two molecules for which cryogenic distillation has found practical application in order to obtain 13C enriched products: CO and CH4. For this reason, the very first part of this thesis work has been focused on a comparative study between the distillation of binary isotopic mixtures of carbon monoxide (12CO and 13CO) and methane (12CH4 and 13CH4), in order to determine which of the two mixtures is easier to separate. Computations carried out with short-cut methods have proven that the mixture of carbon monoxide isotopes is the most promising. Consequently, the cryogenic distillation of CO has been analysed more in detail, in particular a multicomponent distillation taking into account a more realistic mixture has been studied. Rigorous methods have been employed for this purpose, through the exploitation of a commercial simulator, Aspen Plus® which has been adapted for the purpose after verifying its reliability by comparison of the results with those available in the literature. Finally the oxidation of 13CO to 13CO2 has been investigated, taking into account two different processes to turn the 13CO2 molecule produced by distillation into 13CO2.File | Dimensione | Formato | |
---|---|---|---|
2017_12_Scaccabarozzi.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
5.4 MB
Formato
Adobe PDF
|
5.4 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/137520