The aim of this work is to set up a comprehensive thermodynamic model for Solid-Liquid-Vapour (SLVE) equilibrium calculations in order to compute the CO2 and H2S freezing points in mixtures of interest for natural gas processes. The motivation of this work resides in the fact that the use of natural gas has recently grown because it is an environmental-friendly fossil fuel and allows to significantly reduce the problems of acid rain, ozone layer or greenhouse gases. Natural gas is mainly extracted from sour and acid reserves. In view of this, one of the main technological issues is the solidification of the acid gases when its purification is carried out by low-temperature processes. For this reason, it is important to spend efforts on the development of reliable thermodynamic models in order to describe SLVE conditions. The thermodynamic approach used in this work is based on the coupling of a cubic equation of state (SRK EoS), used to represent the fluid phases, with a thermodynamic cycle to also express the fugacity of the solid phase. This has been expressed in terms of properties which have been considered as adaptive parameters, along with the binary interaction parameter, kij. In particular CO2-H2S, CH4-H2S and CH4-CO2 binary systems have been analyzed under SLVE conditions. For the CO2-H2S system, two different kij have been obtained as function of temperature, in order to better represent the SCO2LVE and the SH2SLVE locus, respectively. Moreover, the model is also able to represent the eutectic point of the system. On the other hand, for the CH4-H2S and CO2-CH4 systems, a constant binary interaction parameter has been used. The developed model has been validated on multicomponent mixtures by comparison with the experimental data available for the CO2-H2S-CH4 system. The resulting approach has been used to perform a thermodynamic analysis of two different low-temperature/cryogenic natural gas purification processes proposed in the literature to separate H2S or CO2 from raw natural gas.
Lo scopo di questo lavoro è stato sviluppare un modello termodinamico di equilibrio Solido-Liquido-Vapore al fine di calcolare i punti di solidificazione di CO2 e H2S in miscele di interesse per i processi del gas naturale. La motivazione di questo lavoro risiede nel fatto che l’utilizzo del gas naturale sta crescendo sempre di più essendo un combustibile fossile ecologico e che consente di ridurre significativamente i problemi di piogge acide, strato di ozono o gas serra. Essendo il gas naturale principalmente estratto da riserve ricche di CO2 e H2S, uno dei principali problemi tecnologici è la solidificazione dei gas acidi quando la purificazione viene condotta con processi a bassa temperatura. Per questo motivo, è importante sviluppare un modello termodinamico affidabile che consenta di descrivere l'equilibrio Solido-Liquido-Vapore. L'approccio termodinamico utilizzato in questo lavoro si basa sull'accoppiamento di un'equazione di stato cubica (SRK EoS) per la rappresentazione delle fasi fluide con un ciclo termodinamico per esprimere la fugacità in fase solida. Quest’ultima è stata espressa in termini di proprietà che sono state considerate come parametri adattivi, insieme al parametro di interazione binaria, kij. In particolare, i sistemi binari CO2-H2S, CH4-H2S e CH4-CO2 sono stati analizzati in condizioni di SLVE. Per il sistema CO2-H2S, al fine di rappresentare meglio il luogo dei punti di SCO2LVE e di SH2SLVE, due diverse espressioni per kij, funzione della temperatura, sono state ottenute. Il modello è, inoltre, in grado di rappresentare il punto eutettico del sistema. Per i sistemi CH4-H2S e CH4-CO2, invece, un valore costante per kij è stato considerato. Il modello sviluppato è stato poi convalidato su miscele multicomponenti per confronto con dati sperimentali disponibili per il sistema ternario CO2-CH4-H2S. L'approccio risultante è stato utilizzato per condurre un’analisi termodinamica di due diversi processi di purificazione del gas naturale proposti in letteratura per separare H2S o CO2 da gas naturale a basse temperature.
Thermodynamic method for the prediction of solid H2S or CO2 formation
SALVI, ELEONORA
2016/2017
Abstract
The aim of this work is to set up a comprehensive thermodynamic model for Solid-Liquid-Vapour (SLVE) equilibrium calculations in order to compute the CO2 and H2S freezing points in mixtures of interest for natural gas processes. The motivation of this work resides in the fact that the use of natural gas has recently grown because it is an environmental-friendly fossil fuel and allows to significantly reduce the problems of acid rain, ozone layer or greenhouse gases. Natural gas is mainly extracted from sour and acid reserves. In view of this, one of the main technological issues is the solidification of the acid gases when its purification is carried out by low-temperature processes. For this reason, it is important to spend efforts on the development of reliable thermodynamic models in order to describe SLVE conditions. The thermodynamic approach used in this work is based on the coupling of a cubic equation of state (SRK EoS), used to represent the fluid phases, with a thermodynamic cycle to also express the fugacity of the solid phase. This has been expressed in terms of properties which have been considered as adaptive parameters, along with the binary interaction parameter, kij. In particular CO2-H2S, CH4-H2S and CH4-CO2 binary systems have been analyzed under SLVE conditions. For the CO2-H2S system, two different kij have been obtained as function of temperature, in order to better represent the SCO2LVE and the SH2SLVE locus, respectively. Moreover, the model is also able to represent the eutectic point of the system. On the other hand, for the CH4-H2S and CO2-CH4 systems, a constant binary interaction parameter has been used. The developed model has been validated on multicomponent mixtures by comparison with the experimental data available for the CO2-H2S-CH4 system. The resulting approach has been used to perform a thermodynamic analysis of two different low-temperature/cryogenic natural gas purification processes proposed in the literature to separate H2S or CO2 from raw natural gas.File | Dimensione | Formato | |
---|---|---|---|
2017_12_Salvi.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
3.82 MB
Formato
Adobe PDF
|
3.82 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/137541