The submitted work concerns the effects of flash-boiling and effervescent atomization applied to gasoline direct injection. The aim is to analyze the behavior of different pure fuels when the injection temperature rises and the "flash-boiling" conditions are reached; then compare it with the behavior of some of the same fuels, blended with air, thus operating an "effervescent injection", at the temperature rise. To do this, four different parameters of the spray have been measured and calculated: average speed in the center, median D10 diameters, penetration and cone angle. The importance of the study is therefore on the comparison of the results obtained thanks to the known flash-boiling phenomenon compared to those obtained by the effervescent atomization technique; in order to evaluate the differences between the two when applying to a multi-hole commercial injector for direct injection engines. At the same time in this work the double injection were studied: the results obtained show that the second one is slightly affected by the presence of the first one and more stable in the results; that the behavior of commercial gasoline differs significantly from that of the commonly used fuels in laboratory injectors (n-heptane), while the normal hexane approximates much better the behavior. It also emerges that as the temperature increases, there is a progressive collapse of the spray whose 5 jets tend to merge into a single spray; at the same time there is a reduction in the diameter of the drops, penetration and speed of the jet. The cone angle instead shows an increase in the area immediately following the injector. All effects related to the evaporation of part of the fluid injected and typical of the flash-boiling phenomenon. The results obtained with the "effervescent injection" method show great similarities to that related to the flash-boiling phenomenon, but at significantly lower temperatures. These have led to the determination of a temperature value that, added point-to-point in the blends of air-fueled fuels, ensures the best match between the interpolating curves of the experimental data; allowing therefore to affirm with certainty that the same effects related to flash-boiling are anticipated by effervescent atomization. This potentially provides the same results in terms of reducing fuel consumption and formation of pollutants without the need to overheat the fuel injected to have "flash-boiling" or to increase the injection pressure too much; thus containing energy expenditure. Finally, an estimation of the amount of air dissociated in the added fuels is carried out, which was possible to measure with certainty only in cold, and the verification of such results through literature. It has thus been found that at this temperature the amount of dissolved air should already be sufficient to yield results which are not experimentally highlighted. A detailed study of how air solubility varies in the various fuels as the temperature rises and what effects it has on the effervescent atomization phenomenon is referred to developments and future work. The entire work was carried out at the Consiglio Nazionale delle Ricerche – Instituto per l’Energetica e le Interfasi. Part of the results obtained were presented at the Aivela 2017 conference, and were accepted for publication at the ICLASS 2018 conference.
Il lavoro presentato riguarda gli effetti del fenomeno di flash-boiling ed effervescent atomization, applicati all’iniezione diretta di benzina. L’obiettivo è di analizzare il comportamento di diversi combustibili puri al crescere della temperatura d’iniezione, quando si raggiungono le condizioni di flash-boiling; per poi confrontarlo con il comportamento di alcuni degli stessi combustibili, miscelati con aria, operando quindi un’”effervescent injection”, sempre al crescere della temperatura. Per fare questo si sono misurate e calcolate quattro diverse grandezze dello spray: velocità media nel centro, diametri medi D10, penetrazione e angolo di cono. L’importanza dello studio verte quindi sul confronto dei risultati ottenuti grazie al noto fenomeno del flash-boiling rispetto a quelli ottenuti dalla tecnica di “effervescent atomization”; in modo da poter valutare le differenze che si riscontrano fra le due, nel caso di applicazione a un iniettore commerciale multi-foro per motori a iniezione diretta. Allo stesso tempo nel lavoro sono state studiate le iniezioni doppie: i risultati ottenuti mostrano come la seconda risulti essere leggermente influenzata dalla presenza della prima e più stabile nei risultati e che il comportamento delle benzine commerciali si discosta significativamente da quello dei combustibili comunemente utilizzati nei test sugli iniettori di laboratorio (n-eptano), mentre il normal-esano ne approssima decisamente meglio il comportamento. Emerge inoltre che al crescere della temperatura si assiste ad un progressivo collassare dello spray, i cui 5 getti tendono a unirsi in un unico spray; al contempo si ha una riduzione di diametro delle gocce, penetrazione e velocità del getto. L’angolo di cono invece mostra un incremento nella zona immediatamente successiva all’iniettore. Tutti effetti legati all’evaporazione di parte del fluido iniettato e tipici del fenomeno di flash-boiling. I risultati ottenuti con il metodo di “effervescent injection” presentano grandi similitudini con quello legati al fenomeno del flash-boiling, ma a temperature significativamente inferiori. Questi hanno portato a determinare un valore di temperatura che, sommato punto a punto nelle curve dei combustibili miscelati con aria, garantisca la miglior corrispondenza tra le curve interpolanti i dati sperimentali; permettendo dunque di affermare con certezza che gli stessi effetti legati al flash-boiling vengono anticipati dall’effervescent atomization. Ciò garantisce potenzialmente i medesimi risultati, in termini di riduzione del consumo e formazioni degli inquinanti, senza la necessità di riscaldare eccessivamente il combustibile iniettato per avere “flash-boiling” né di alzare troppo la pressione di iniezione; contenendo di conseguenza il dispendio energetico. Da ultimo si è proceduto ad una stima della quantità di aria disciolta nei combustibili addizionati, che è stato possibile misurare con certezza solo a freddo, ed alla verifica di tali risultati attraverso la letteratura. Si è così riscontrato che a tale temperatura la quantità di aria disciolta dovrebbe essere già sufficiente a dare risultati che invece non si evidenziano sperimentalmente. Si rimanda dunque a sviluppi e lavori futuri un’indagine dettagliata di come varia la solubilità dell’aria nei diversi combustibili al crescere della temperatura, quale sia la dinamica del fenomeno di effervescent atomization ed i tempi affinché i suoi effetti si manifestino. L’intero lavoro è stato svolto presso il Consiglio Nazionale delle Ricerche –Istituto per l’energetica e le interfasi. Parte dei risultati ottenuti sono stati presentati alla conferenza Aivela 2017, e sono stati accettati per la pubblicazione alla conferenza ICLASS 2018.
Confronto tra flash-boiling ed effervescent atomization in uno spray GDI
CERUTTI, GIORGIO
2016/2017
Abstract
The submitted work concerns the effects of flash-boiling and effervescent atomization applied to gasoline direct injection. The aim is to analyze the behavior of different pure fuels when the injection temperature rises and the "flash-boiling" conditions are reached; then compare it with the behavior of some of the same fuels, blended with air, thus operating an "effervescent injection", at the temperature rise. To do this, four different parameters of the spray have been measured and calculated: average speed in the center, median D10 diameters, penetration and cone angle. The importance of the study is therefore on the comparison of the results obtained thanks to the known flash-boiling phenomenon compared to those obtained by the effervescent atomization technique; in order to evaluate the differences between the two when applying to a multi-hole commercial injector for direct injection engines. At the same time in this work the double injection were studied: the results obtained show that the second one is slightly affected by the presence of the first one and more stable in the results; that the behavior of commercial gasoline differs significantly from that of the commonly used fuels in laboratory injectors (n-heptane), while the normal hexane approximates much better the behavior. It also emerges that as the temperature increases, there is a progressive collapse of the spray whose 5 jets tend to merge into a single spray; at the same time there is a reduction in the diameter of the drops, penetration and speed of the jet. The cone angle instead shows an increase in the area immediately following the injector. All effects related to the evaporation of part of the fluid injected and typical of the flash-boiling phenomenon. The results obtained with the "effervescent injection" method show great similarities to that related to the flash-boiling phenomenon, but at significantly lower temperatures. These have led to the determination of a temperature value that, added point-to-point in the blends of air-fueled fuels, ensures the best match between the interpolating curves of the experimental data; allowing therefore to affirm with certainty that the same effects related to flash-boiling are anticipated by effervescent atomization. This potentially provides the same results in terms of reducing fuel consumption and formation of pollutants without the need to overheat the fuel injected to have "flash-boiling" or to increase the injection pressure too much; thus containing energy expenditure. Finally, an estimation of the amount of air dissociated in the added fuels is carried out, which was possible to measure with certainty only in cold, and the verification of such results through literature. It has thus been found that at this temperature the amount of dissolved air should already be sufficient to yield results which are not experimentally highlighted. A detailed study of how air solubility varies in the various fuels as the temperature rises and what effects it has on the effervescent atomization phenomenon is referred to developments and future work. The entire work was carried out at the Consiglio Nazionale delle Ricerche – Instituto per l’Energetica e le Interfasi. Part of the results obtained were presented at the Aivela 2017 conference, and were accepted for publication at the ICLASS 2018 conference.File | Dimensione | Formato | |
---|---|---|---|
2017_12_Cerutti.pdf
solo utenti autorizzati dal 05/12/2018
Descrizione: Testo della tesi
Dimensione
4.42 MB
Formato
Adobe PDF
|
4.42 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/137638