This work is aimed at solving issues found when operators, in oil companies, try to describe the behaviour of the reservoir fluid during the transportation process via off-shore pipelines. As a matter of fact, the correct description of the fluid, its components and its properties is extremely important if one wants to know if, problems such as the hydrate formation or asphaltenes and wax deposition, are a real concern to the production operations, with consequent blockage of the flowlines and relative economic impact. Hence, it was built a model in MATLAB® that, starting from the Peng-Robinson equation of state with Peneloux correction, computes the thermodynamic properties of the fluid, either in a single or two-phase condition. Such model, given the parameters of the components as input, is able to perform the flash operation, to determine the saturation pressure and to simulate the common lab experiments carried out on the fluid, such as Constant-Composition Expansion, Differential Liberation and viscosity test. Furthermore, it offers the possibility to perform a regression so as to match real and simulated data and simulate the fluid as accurately as possible. The results of the modelled fluid are presented and compared to those obtained by employing a commercial software, showing the greater flexibility given to the operator in performing the regression operation and, in general, the greater accuracy observed when replicating the behaviour of the fluid. In addition, a second model that simulates the temperature and pressure drop of an off- shore pipeline is presented. Several models for the solution of the momentum equation were implemented, with a major focus on the separated flow model. Furthermore, several correlations for the void fraction were tested, showing those that describe more accurately the flow in the line. The results obtained by analysing three different lines are presented and those results are compared to the ones of a professional software and real measured data. The pressure drops estimated by the separated flow model were correct in two cases out of three, while the mechanistic models replicate reliably the actual solutions in all three cases. Temperature drops, on the other hand, were always better estimated by the model, hence giving to the operator the possibility to better evaluate the occurrence of the aforementioned problems.
Questo lavoro di tesi si pone l’obiettivo di andare a risolvere delle problematiche, riscontrate nel mondo industriale, quando si descrive il comportamento di un fluido di giacimento durante il trasoporto per mezzo di linee sommerse. La corretta descrizione del fluido, dei suoi componenti e delle sue proprietà è, infatti, di vitale importanza per sapere se, problemi come la formazione di idrati o il deposito di cere ed asfalteni, possano effettivamente costituire un pericolo per la normale produzione del giacimento, con conseguente blocco delle linee e relativo impatto economico. Si è deciso, quindi, di costruire un modello in MATLAB® che, partendo dall’e- quazione di stato Peng-Robinson con correzione di Peneloux, calcoli le proprietà termodinamiche del fluido, sia esso mono o bifasico. Tale modello, infatti, dati in input i parametri dei vari componenti, è in grado di compiere il flash delle fasi, il calcolo della pressione di saturazione e la simulazione di una serie di esperimenti effet- tuati in laboratorio, quali: Constant-Composition Expansion, Differential Liberation, o misura della viscosità. Offre, inoltre, la possibilità di effettuare una regressione sui dati reali, al fine di simulare nella maniera più corretta il fluido. I risultati del fluido così modellato sono presentati e confrontati con quelli ottenuti utilizzando un software commerciale, mostrando la maggiore flessibilità data all’operatore nell’effettuare la regressione e, in generale, la maggiore accuratezza ottenuta nel replicare il corretto comportamento del fluido. Successivamente è stato costruito un secondo modello che sia in grado si simulare le cadute di pressione e temperatura in una linea sommersa. Sono stati implementati diversi modelli per la risoluzione della quantità di moto, con enfasi sul modello a fasi separate. Diverse correlazioni per la frazione di vuoto presenti in letteratura sono state inoltre utilizzati, mostrando quelli che descrivono con maggiore accuratezza il flusso nella linea. I risultati ottenuti andando ad analizzare tre diverse linee sono presentati e tali risultati sono confrontati con quelli generati da un software commerciale. Le cadute di pressione sono state correttamente modellate in due casi su tre utilizzando il modello a fasi separate, mentre i modelli meccanicistici offrono in tutti e tre i casi valori affidabili. Per le cadute di temperatura, invece, i risultati sono migliori in tutte le linee analizzate rispetto a quanto ottenuto col software, offrendo così all’operatore la possibilità di verificare con maggiore precisione il verificarsi dei problemi prima citati.
Analysis of an off-shore pipeline : fluid properties and flow modelling
MOLARO, ANDREA
2016/2017
Abstract
This work is aimed at solving issues found when operators, in oil companies, try to describe the behaviour of the reservoir fluid during the transportation process via off-shore pipelines. As a matter of fact, the correct description of the fluid, its components and its properties is extremely important if one wants to know if, problems such as the hydrate formation or asphaltenes and wax deposition, are a real concern to the production operations, with consequent blockage of the flowlines and relative economic impact. Hence, it was built a model in MATLAB® that, starting from the Peng-Robinson equation of state with Peneloux correction, computes the thermodynamic properties of the fluid, either in a single or two-phase condition. Such model, given the parameters of the components as input, is able to perform the flash operation, to determine the saturation pressure and to simulate the common lab experiments carried out on the fluid, such as Constant-Composition Expansion, Differential Liberation and viscosity test. Furthermore, it offers the possibility to perform a regression so as to match real and simulated data and simulate the fluid as accurately as possible. The results of the modelled fluid are presented and compared to those obtained by employing a commercial software, showing the greater flexibility given to the operator in performing the regression operation and, in general, the greater accuracy observed when replicating the behaviour of the fluid. In addition, a second model that simulates the temperature and pressure drop of an off- shore pipeline is presented. Several models for the solution of the momentum equation were implemented, with a major focus on the separated flow model. Furthermore, several correlations for the void fraction were tested, showing those that describe more accurately the flow in the line. The results obtained by analysing three different lines are presented and those results are compared to the ones of a professional software and real measured data. The pressure drops estimated by the separated flow model were correct in two cases out of three, while the mechanistic models replicate reliably the actual solutions in all three cases. Temperature drops, on the other hand, were always better estimated by the model, hence giving to the operator the possibility to better evaluate the occurrence of the aforementioned problems.File | Dimensione | Formato | |
---|---|---|---|
2017_12_Molaro.pdf
solo utenti autorizzati dal 05/12/2018
Descrizione: Testo della tesi
Dimensione
5.68 MB
Formato
Adobe PDF
|
5.68 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/137691