In the last decades organic semiconductors have gained considerable interest in electronics because of their mechanical compliance and flexibility, the possibility of being processed and deposited via solution in ambient conditions, and to be chemically engineered in their optical properties. The prospect of depositing these materials adopting additive techniques derived from the graphical arts represents a fundamental asset for these emerging electronic technologies. As an example, inkjet printing, screen printing, roll-to-roll coating and other methods show compatibility with a wide selection of substrates, are upward scalable and thus capable of addressing large area deposition, and are compatible with already assessed industrial processes. Interestingly, these deposition techniques can now be used to deposit an increasing amount of different inorganic materials, which have complementary properties and enlarge the possibilities for printed devices. A novel concept of cheap, entirely printed "intelligent" system could become a game changer in numerous applications, paving the way to cost-effective solutions that were not even thinkable before. Examples can be envisioned in smart packaging, electronic skin, large-area scanning for border and customs security, diagnostic imaging, smart packaging, point-of-care disposable systems and wearable technology. In the field of light-sensing or light emitting applications, organic semiconductors are particularly promising for their outstanding absorption coefficients and luminescence in the visible range. Organic LED-based screens and lighting systems are now integrated with standard technology, gaining outstanding market share. Moreover, significant improvements were recently demonstrated in the field of organic, solution processed solar cells. Solution processed inorganics, in turn, become decisive when detecting higher energy photons, showing remarkable performances. The focus of this work has been the development of novel, flexible electronics for photodetection and large area imaging. These prototypes, fabricated by scalable printing techniques, compatible with industrial processes, represent new prospective cost-effective solutions in conformal imaging, large object scanning and dosimetry applications.
Nelle ultime decadi i semiconduttori organici hanno attratto considerevole attenzione in ambito elettronico per le loro proprietà meccaniche, per la possibilità di essere processati via soluzione in condizioni ambiente, e di essere ingegnerizzati chimicamente nelle loro proprietà optoelettroniche. La prospettiva di depositare questi materiali con tecniche additive derivate dalle arti grafiche rappresenta un punto chiave di questa tecnologia emergente. La stampa a getto d'inchiostro, lo screen printing, il roll-to-roll coating sono solo alcuni degli esempi di tecniche di deposizione scalabili, a basso costo, compatibili con una larga varietà di substrati (anche flessibili), con deposizione su larga area e con processi industriali già avviati. Queste tecniche possono ora essere utilizzate per implementare un nuovo concetto di sistema elettronico intelligente, interamente stampato, che può rappresentare un cambio di paradigma in una larga varietà di applicazioni e sbloccare possibilità finora impensabili in termini di versatilità, efficienza ed efficacia in termini di costo. Esempi sono individuabili nei settori del packaging intelligente, acquisizione di immagini diagnostiche, pelle elettronica, scansione di oggetti a larga area per la sicurezza alle frontiere, dispositivi monouso e indossabili. Recenti avanzamenti hanno permesso di estendere queste tecniche anche alla deposizione di materiali inorganici, ampliando significativamente le possibilità della tecnologia. Il potenziale di questa presenta ulteriori punti di forza nell'ambito della rivelazione di fotoni a bassa ed alta energia e nella sensoristica di immagine. Questo lavoro si focalizza nella realizzazione di elettronica totalmente innovativa, interamente stampata su substrati flessibili, per fotorivelazione su diversi spettri. I dispositivi, realizzati interamente con tecniche scalabili, rappresentano una potenziale rivoluzione nell'imaging a larga area e nella dosimetria di radiazione.
Fully printed organic imagers on flexible substrates for large area applications and novel radiation detectors
CESARINI, MATTEO
Abstract
In the last decades organic semiconductors have gained considerable interest in electronics because of their mechanical compliance and flexibility, the possibility of being processed and deposited via solution in ambient conditions, and to be chemically engineered in their optical properties. The prospect of depositing these materials adopting additive techniques derived from the graphical arts represents a fundamental asset for these emerging electronic technologies. As an example, inkjet printing, screen printing, roll-to-roll coating and other methods show compatibility with a wide selection of substrates, are upward scalable and thus capable of addressing large area deposition, and are compatible with already assessed industrial processes. Interestingly, these deposition techniques can now be used to deposit an increasing amount of different inorganic materials, which have complementary properties and enlarge the possibilities for printed devices. A novel concept of cheap, entirely printed "intelligent" system could become a game changer in numerous applications, paving the way to cost-effective solutions that were not even thinkable before. Examples can be envisioned in smart packaging, electronic skin, large-area scanning for border and customs security, diagnostic imaging, smart packaging, point-of-care disposable systems and wearable technology. In the field of light-sensing or light emitting applications, organic semiconductors are particularly promising for their outstanding absorption coefficients and luminescence in the visible range. Organic LED-based screens and lighting systems are now integrated with standard technology, gaining outstanding market share. Moreover, significant improvements were recently demonstrated in the field of organic, solution processed solar cells. Solution processed inorganics, in turn, become decisive when detecting higher energy photons, showing remarkable performances. The focus of this work has been the development of novel, flexible electronics for photodetection and large area imaging. These prototypes, fabricated by scalable printing techniques, compatible with industrial processes, represent new prospective cost-effective solutions in conformal imaging, large object scanning and dosimetry applications.File | Dimensione | Formato | |
---|---|---|---|
2018_02_PhD_Cesarini.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: thesis
Dimensione
17.91 MB
Formato
Adobe PDF
|
17.91 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/137882