One of the main goal in optoelectronics is to develop a coherent light emitter and a photodetector compatible with the mass production Si-based industry, exploiting compatible semiconductors for the near and mid infrared (NIR-MIR) application field. Because of its band structure, Si has two main drawbacks in optoelectronics: the indirect bandgap, and its 1.11 eV height. The former results in a poor light emission efficiency, the latter stops the optical absorption at 1.1 um. Concerning the light absorption applications, the Ge is a solid, valuable and reliable material. In addition to its full compatibility, Ge extends the Si optical absorption further in the IR up to 1.55 and 1.8 um where the direct and the indirect band edges lie. This thesis work has been focused in the achievement of a reliable approach that can provide a modification in the Ge absorption characteristic, tailoring its response. I took advantage of plasmonics and strain engineering, to enhance its responsivity at a specific and to push the upper absorption limit at higher respectively. A Schottky contacts have been used to lower the background dark current. Optical lithography and e-beam evaporation have been used to investigate both the height and the reproducibility of the Schottky barrier of different metal-Ge contacts. In addition, different surface preparation cleanings have been used in order to point-out their role in the contact characteristics. A stable, reproducible and feasible Schottky contact has been found. Metal-Semiconductor-Metal (MSM) photodetectors have been adopted to integrate plasmonic effects. With the support of a numerical simulation tool, different geometries and contact characteristics have been studied to pursue a resonant responsivity enhancement. Electron beam lithography (EBL) and electron beam evaporation techniques have been used to fabricate the samples, which have been characterized via two probes electrical measurements and via a lock-in technique for photocurrent detection. Depending on the considered MSM configuration, high gain factors can be achieved from a simulation point of view. Experimentally, a plasmonically enhanced interdigitated MSM for NIR photodetection has been proved in agreement with the reported simulations. In order to exploit the described MSM for sensing applications, the device surface can be grafted to trap a specific analyte. The Ge surface functionalization by a thermally activated wet approach has been reported. A top-down approach to induce tensile strain in suspended Ge membranes by the forces produced from SiGe stressors has been proposed and reported. A coherent epitaxial SiGe film has been grown on a relaxed Ge film by low-energy plasma-enhanced chemical vapor deposition (LEPECVD), and then patterned by EBL, dry and wet etching. X-ray diffraction (XRD) and micro-Raman have been used to investigate the initial and achieved strain state, respectively. Uniaxial tensile strain values > 1% are reported.
Uno degli obiettivi principali in optoelettronica è quello di sviluppare un emettitore ed un fotorilevatore che siano compatibili con i processi industriali basati sul silicio, sfruttando semiconduttori che siano con esso compatibili e che si adattino alle applicazioni nel vicino e medio infrarosso (NIR-MIR). Il band gap indiretto della struttura a bande del Si, e l’altezza di 1.11 eV, rappresentano le principali limitazioni per la sua applicazione in campo optoelettronico. Per quanto riguarda le applicazioni di fotorivelazione, il Ge è una alternativa interessante, valida ed affidabile. Oltre alla sua piena compatibilità con il Si, il Ge estende ulteriormente l'assorbimento ottico del Si nell'IR fino a 1.55 e 1.8 um, corrispondenti al band gap diretto e indiretto rispettivamente. Questo lavoro di tesi è stato focalizzato sullo sviluppo ed ottenimento di un approccio affidabile che possa modificare le caratteristiche di assorbimento del Ge. La plasmonica e lo strain engineering sono stati utilizzati per migliorare la risposta ad una specifica lunghezza d’onda e per spingere il limite di assorbimento superiore a più elevate rispettivamente. Per abbassare le correnti di buio sono stati usati dei contatti Schottky. La litografia ottica e l'evaporazione a fascio elettronico sono state utilizzate per realizzare i campioni, grazie ai quali è stato possibile studiare l'altezza e la riproducibilità della barriera Schottky di diversi contatti metallo-Ge. Inoltre, sono state utilizzate diverse preparazioni chimiche della superficie per evidenziare il loro ruolo nelle caratteristiche di contatto riscontrate, da cui è stato ottenuto un contatto Schottky stabile e riproducibile. I fotorivelatori Metal-Semiconductor-Metal (MSM) sono stati invece utilizzati per integrare effetti plasmonici. Con il supporto di simulazioni numeriche, sono state studiate diverse geometrie di contatto per ottenere un miglioramento della responsività, risonante ad una specifica . La litografia elettronica (EBL) e l’evaporazione a fascio elettronico sono state utilizzate per fabbricare i campioni, i quali sono stati caratterizzati mediante misurazioni elettriche a due punte e di fotocorrente tramite una tecnica di lock-in. Dalle simulazioni riportate, a seconda della configurazione MSM considerata, è possibile introdurre fattori di guadagno elevati grazie all’approccio descritto. Sperimentalmente, in accordo con le simulazioni, è stato ottenuto un MSM interdigitato con risonanza plasmonica nel NIR. Per poter sfruttare questi dispositivi in applicazioni di sensing, la superficie del dispositivo può inoltre essere funzionalizzata per intrappolare uno specifico analita. Grazie ad un approccio da soluzione attivato termicamente, è stata ottenuta la funzionalizzazione della superficie di Ge. Riguardo allo strain engineering, è stato proposto un approccio top-down per indurre uno strain tensile in membrane di Ge sospese, grazie alle forze perimetrali prodotte da stressori di SiGe. Un film di SiGe epitassiale, cresciuto su un film di Ge rilassato mediante la tecnica di deposizione low-energy plasma-enhanced chemical vapor deposition (LEPECVD), è stato nanostrutturato via EBL, dry e wet etching. I liveli di strain iniziali e quelli ottenuti grazie all’approccio descritto sono stati rilevati mediante diffrazione a raggi-X (XRD) e micro-Raman. Valori di strain tensile uniassiali >1% sono stati ottenuti e riportati.
Plasmonics and strain-engineering in ge-based devices for NIR photodetection
LODARI, MARIO
Abstract
One of the main goal in optoelectronics is to develop a coherent light emitter and a photodetector compatible with the mass production Si-based industry, exploiting compatible semiconductors for the near and mid infrared (NIR-MIR) application field. Because of its band structure, Si has two main drawbacks in optoelectronics: the indirect bandgap, and its 1.11 eV height. The former results in a poor light emission efficiency, the latter stops the optical absorption at 1.1 um. Concerning the light absorption applications, the Ge is a solid, valuable and reliable material. In addition to its full compatibility, Ge extends the Si optical absorption further in the IR up to 1.55 and 1.8 um where the direct and the indirect band edges lie. This thesis work has been focused in the achievement of a reliable approach that can provide a modification in the Ge absorption characteristic, tailoring its response. I took advantage of plasmonics and strain engineering, to enhance its responsivity at a specific and to push the upper absorption limit at higher respectively. A Schottky contacts have been used to lower the background dark current. Optical lithography and e-beam evaporation have been used to investigate both the height and the reproducibility of the Schottky barrier of different metal-Ge contacts. In addition, different surface preparation cleanings have been used in order to point-out their role in the contact characteristics. A stable, reproducible and feasible Schottky contact has been found. Metal-Semiconductor-Metal (MSM) photodetectors have been adopted to integrate plasmonic effects. With the support of a numerical simulation tool, different geometries and contact characteristics have been studied to pursue a resonant responsivity enhancement. Electron beam lithography (EBL) and electron beam evaporation techniques have been used to fabricate the samples, which have been characterized via two probes electrical measurements and via a lock-in technique for photocurrent detection. Depending on the considered MSM configuration, high gain factors can be achieved from a simulation point of view. Experimentally, a plasmonically enhanced interdigitated MSM for NIR photodetection has been proved in agreement with the reported simulations. In order to exploit the described MSM for sensing applications, the device surface can be grafted to trap a specific analyte. The Ge surface functionalization by a thermally activated wet approach has been reported. A top-down approach to induce tensile strain in suspended Ge membranes by the forces produced from SiGe stressors has been proposed and reported. A coherent epitaxial SiGe film has been grown on a relaxed Ge film by low-energy plasma-enhanced chemical vapor deposition (LEPECVD), and then patterned by EBL, dry and wet etching. X-ray diffraction (XRD) and micro-Raman have been used to investigate the initial and achieved strain state, respectively. Uniaxial tensile strain values > 1% are reported.File | Dimensione | Formato | |
---|---|---|---|
2018_January_PhD_Lodari.pdf
solo utenti autorizzati dal 30/01/2021
Descrizione: Testo della tesi
Dimensione
34.83 MB
Formato
Adobe PDF
|
34.83 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/137892