Unseen by the passengers aircraft environmental control systems are complex thermodynamic systems, requiring a large quantity of power. The tasks of designing, modelling, optimising and controlling all these systems leave many degrees of freedom to the respective expert, and typically require many design loops to arrive at satisfactory results. This thesis contributes to multiple aspects of this process. In aircraft environmental control systems (ECSs), limit cycle oscillations (LCOs) can occur. Those are problematic since the life expectancy of the ECS is affected. Using an equation-based, object-oriented modelling language (EOOML), a complete, detailed and dynamic simulation model of an ECS is developed. This model includes the engine bleed air system (EBAS), the air conditioning pack, the cabin and ducting dynamics as well as the recirculation system. Using simulations, it is shown that LCOs occurring in ECSs cannot be explained by Helmholtz resonance effects. To further investigate the cause of the LCOs, electropneumatic valves - as used in EBAS - are modelled in more detail, using the Lund-Grenoble (Lu-Gre) friction model. Using this model, LCOs in aircraft ECS are predicted for the first time. Several control strategies are devised, implemented and evaluated against this model. A strategy based on a combination of feed-forward control, feed-back control and online tuning of the integral action outperforms all other candidates. A 46% reduction of the developed objective function is achieved when compared to the state of the art. Current architectures for aircraft cabin climatisation only allow for a small number of temperature zones. Differences in heat load, generated for instance by nonconforming seating class layouts, cannot be compensated by the control system. A new architecture is presented that allows for an infinite number of temperature control zones - at the cost of a more involved control system. Suitable control strategies, as well as failure management strategies are demonstrated. For optimisation studies in the context of simulation models, a class of controllers is found, based on boundary layer sliding mode control (BLSMC). These controllers do not require any tuning effort and show good performance for many systems during simulations. The high sensitivity to noise is unproblematic, as the system is purely virtual at this stage. These features make them suitable for modelling experts at development stages where the architecture design is not yet finalised. On the most basic level, usability aspects of EOOMLs are explored. It is found that the use of inheritance can severely retard the understanding of simulation models. Results also suggest graphical representations to be superior to block diagrams with equation-based and algorithm-based representations taking the middle spot.
Non visibili dai passeggeri, i sistemi di controllo ambientale di aeromobili sono complessi sistemi termodinamici, che richiedono una grande quantit`a di potenza. Il compito di progettazione, modellazione, ottimizzazione e controllo di tutti questi sistemi lascia molta libert`a all’esperto e richiede in genere molti cicli di progettazione per ottenere risultati soddisfacenti. Questa tesi di dottorato contribuisce a molti livelli di questo processo. Nei sistemi di controllo ambientale di aeromobili (ECS) possono verificarsi oscillazioni di ciclo di limite (LCO). Queste sono problematiche poich´e l’aspettativa di vita della ECS viene ridotta. Utilizzando un linguaggio di modellazione orientato all’oggetto, basato sulla equazione (EOOML) viene sviluppato per la prima volta un modello di simulazione completo, dettagliato e dinamico di un’ECS. Questo modello include il ”engine bleed air system (EBAS)”, il condizionatore d’aria, le dinamiche di cabina e condotta, nonch´e il sistema di ricircolo. Usando le simulazioni, `e stato dimostrato che le oscillazioni che si verificano in ECS non possono essere spiegate con gli effetti di risonanza di Helmholtz. Per approfondire la causa delle oscillazione, le valvole elettropneumatiche - come usate in EBAS - sono modellate in modo pi`u dettagliato, utilizzando il modello ”Lund-Grenoble friction”. Utilizzando questo modello, le oscillazioni sistemi di controllo ambientale di aeromobili sono previsti per la prima volta. Diverse strategie di controllo sono state concepite, implementate e valutate con questo modello. Una strategia basata su una combinazione di controllo feedforward, controllo feed-back e tuning online dell’azione integrata supera tutte le altre strategie. Rispetto allo stato dell’arte viene raggiunta una riduzione del 46% della funzione obiettiva sviluppata. Le architetture correnti per la climatizzazione delle cabine di aeromobili consentono solo un piccolo numero di zone di temperatura. Le differenze nel carico di calore, generate per esempio dai layout non conformi alle classi di posti a sedere, non possono essere compensati dal sistema di controllo. Viene qua presentata una nuova architettura che consente un numero infinito di zone di controllo della temperatura - a costo di un sistema di controllo pi`u coinvolto. Sono state dimostrate strategie di controllo appropriate, nonch´e strategie di ”failure management”. Per studi di ottimizzazione nel contesto di modelli di simulazione, viene individuata una classe di controller, basata sul ”boundary layer sliding mode control” (BLSMC). Questi controllori non richiedono alcuno sforzo di sintonia e mostrano buone prestazioni per molti sistemi durante le simulazioni. L’alta sensibilit`a al rumore non `e problematica, poich´e il sistema `e puramente virtuale in questa fase. Queste caratteristiche li rendono adatti per esperti di modellazione durante le fasi di sviluppo in cui il design dell’architettura non `e ancora conclusa. Sul piano di base, sono esplorati aspetti di usabilit`a di EOOML. Si scopre che l’uso dell’ ”ereditariet`a” pu`o rallentare seriamente la comprensione dei modelli di simulazione. I risultati suggeriscono inoltre che le rappresentazioni grafiche siano superiori ai diagrammi a blocchi mentre le rappresentazioni a base di equazioni e quelle a base di algoritmi condividono i posti due e tre.
Modelling and control of aircraft environmental control systems
POLLOK, ALEXANDER JOSEF
Abstract
Unseen by the passengers aircraft environmental control systems are complex thermodynamic systems, requiring a large quantity of power. The tasks of designing, modelling, optimising and controlling all these systems leave many degrees of freedom to the respective expert, and typically require many design loops to arrive at satisfactory results. This thesis contributes to multiple aspects of this process. In aircraft environmental control systems (ECSs), limit cycle oscillations (LCOs) can occur. Those are problematic since the life expectancy of the ECS is affected. Using an equation-based, object-oriented modelling language (EOOML), a complete, detailed and dynamic simulation model of an ECS is developed. This model includes the engine bleed air system (EBAS), the air conditioning pack, the cabin and ducting dynamics as well as the recirculation system. Using simulations, it is shown that LCOs occurring in ECSs cannot be explained by Helmholtz resonance effects. To further investigate the cause of the LCOs, electropneumatic valves - as used in EBAS - are modelled in more detail, using the Lund-Grenoble (Lu-Gre) friction model. Using this model, LCOs in aircraft ECS are predicted for the first time. Several control strategies are devised, implemented and evaluated against this model. A strategy based on a combination of feed-forward control, feed-back control and online tuning of the integral action outperforms all other candidates. A 46% reduction of the developed objective function is achieved when compared to the state of the art. Current architectures for aircraft cabin climatisation only allow for a small number of temperature zones. Differences in heat load, generated for instance by nonconforming seating class layouts, cannot be compensated by the control system. A new architecture is presented that allows for an infinite number of temperature control zones - at the cost of a more involved control system. Suitable control strategies, as well as failure management strategies are demonstrated. For optimisation studies in the context of simulation models, a class of controllers is found, based on boundary layer sliding mode control (BLSMC). These controllers do not require any tuning effort and show good performance for many systems during simulations. The high sensitivity to noise is unproblematic, as the system is purely virtual at this stage. These features make them suitable for modelling experts at development stages where the architecture design is not yet finalised. On the most basic level, usability aspects of EOOMLs are explored. It is found that the use of inheritance can severely retard the understanding of simulation models. Results also suggest graphical representations to be superior to block diagrams with equation-based and algorithm-based representations taking the middle spot.File | Dimensione | Formato | |
---|---|---|---|
thesis.pdf
Open Access dal 12/01/2019
Descrizione: Thesis text
Dimensione
7.03 MB
Formato
Adobe PDF
|
7.03 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/137901