Titanium is one of the most widely used metals when treating with aggressive corrosive environments, due to the combination of its mechanical properties and its excellent corrosion resistance. The first chapter of this thesis reports a detailed overview of its fields of applications, focusing on the different corrosion forms and mechanisms that titanium undergoes in different corrosive solutions. Special attention is paid to localized forms of corrosion, which are the most dangerous in industrial applications. The second chapter offers an overview of treatments that can be done on titanium to enhance its corrosion resistance in the environments where pure titanium tends to fail. Ion implantation, alloying, anodizing, thermal and chemical treatments are discussed; of the latter, chemical reaction models are reported. The goal of the experimental part of this work is to develop effective chemical and thermal treatments to improve localized corrosion (pitting) behavior of titanium in aggressive halide solutions. Sodium hydroxide and hydrogen peroxide have been chosen for the treatments as they are strong oxidizers. Treatments in NaOH and H2O2 solutions have been carried out investigating several parameters: quantity and concentration of solution, temperature, agitation, duration of treatment. The thermal treatment parameters considered were temperature and the nature of the samples treated (as is, pretreated in NaOH and pretreated in H2O2). Of the variables explored for chemical treatment, temperature and duration were more thoroughly investigated as they yielded the more marked differences in terms of pitting corrosion resistance. SEM, optical microscopy and XRD analysis were carried out to characterize the surface of the samples treated. The composition of the oxide layers was identified based on the data found in the literature, crystalline phase were detected, thickness was determined by direct observation. The corrosion behavior of the samples was determined by electrochemical potentiodynamic tests in bromides anions solutions, and the results were compared to those of both untreated and anodized samples. Temperature and duration of treatment and application of subsequent thermal treatment significantly affected the pitting potential of the samples, allowing to determine the conditions for treatments to be effective. Having obtained data on the effect of the treatments on as is titanium, the same treatments were applied to recover scratches on samples previously anodized either with color anodization or with anodic spark deposition. Compatibility of treatments was studied to determine whether the reactants used for chemical treatment and the oxide formed during anodization could interact in deleterious ways. Recovery of pitting corrosion resistance was tested by the same electrochemical potentiodynamic tests carried out on non-anodized treated samples.
Il titanio è uno dei metalli maggiormente utilizzati in ambienti che presentano condizioni corrosive aggressive, grazie alla combinazione delle sue proprietà meccaniche e della sua eccellente resistenza a corrosione. Il primo capitolo di questo elaborato di tesi riporta una panoramica dettagliata dei campi applicativi del titanio, focalizzando sulle diverse forme di corrosione e sui meccanismi che il metallo subisce nelle diverse soluzioni corrosive. Particolare attenzione è dedicata alle forme di corrosione localizzata, che sono le più pericolose e dannose nell’ambito delle applicazioni industriali. Il secondo capitolo offre un’analisi dei trattamenti applicabili al titanio per aumentarne la resistenza a corrosione in ambienti molto aggressivi. Vengono discussi impiantazione ionica, alligazione, anodizzazione, trattamenti termici e chimici; di quest’ultimi, sono riportati i modelli delle reazioni chimiche. L’obiettivo della fase sperimentale è quello di sviluppare trattamenti chimici e termici efficaci, che migliorino il comportamento a corrosione in forma localizzata (pitting) del titanio in soluzioni contenenti alogenuri. I reagenti per i trattamenti chimici sono idrossido di sodio e acqua ossigenata, scelti per il loro marcato carattere ossidante. Diversi parametri dei trattamenti chimici sono stati considerati per osservarne l’effetto sul prodotto finale: quantità e concentrazione della soluzione di trattamento, temperatura, agitazione, durata. Per quanto riguarda i trattamenti termici, i parametri considerati sono stati la temperatura di ossidazione (dell’ordine delle centinaia di gradi) e la natura dei campioni trattati (tal quali, pretrattati in NaOH e pretrattati in H2O2). Delle variabili esplorate per il trattamento chimico, la temperatura e la durata sono state analizzate più accuratamente, visto il loro marcato effetto sulla resistenza a corrosione. Analisi al microscopio ottico, al microscopio elettronico (SEM) ed ai raggi X (XRD) sono state svolte per caratterizzare la superficie dei campioni. La composizione dell’ossido è stata identificata interfacciando i dati riportati in letteratura con quelli sperimentali, la presenza di fasi cristalline è stata rilevata dagli spettri a raggi X e lo spessore dell’ossido è stato misurato direttamente tramite le tecniche di microscopia elettronica. Il comportamento a corrosione dei campioni è stato determinato da test potenziodinamici in soluzioni di bromuri, e i risultati sono stati comparati sia con quelli dei campioni non trattati, che con quelli dei campioni anodizzati sia in “color anodization” che in “Anodic Spark Deposition” (ASD). La temperatura e la durata dei trattamenti, così come la seguente applicazione di trattamenti termici, hanno influenzato il potenziale di pitting mostrato dai campioni, permettendo di determinare le condizioni alle quali i trattamenti possano dirsi efficaci. Avendo ottenuto i dati relativi all’effetto dei trattamenti sul titanio tal quale, gli stessi trattamenti sono stati applicati per rimediare abrasioni su campioni precedentemente anodizzati (in “color anodization” o in ASD). La compatibilità fra i trattamenti è stata investigata per determinare se i reagenti utilizzati nei trattamenti chimici potessero reagire con l’ossido formato durante l’anodizzazione e generare effetti indesiderati. Il recupero della resistenza a corrosione localizzata è stato verificato con le medesime prove potenziodinamiche applicate sui campioni trattati a partire da titanio non anodizzato.
Chemical and thermal treatments to improve corrosion resistance of titanium
NICOLIS, DAVIDE
2016/2017
Abstract
Titanium is one of the most widely used metals when treating with aggressive corrosive environments, due to the combination of its mechanical properties and its excellent corrosion resistance. The first chapter of this thesis reports a detailed overview of its fields of applications, focusing on the different corrosion forms and mechanisms that titanium undergoes in different corrosive solutions. Special attention is paid to localized forms of corrosion, which are the most dangerous in industrial applications. The second chapter offers an overview of treatments that can be done on titanium to enhance its corrosion resistance in the environments where pure titanium tends to fail. Ion implantation, alloying, anodizing, thermal and chemical treatments are discussed; of the latter, chemical reaction models are reported. The goal of the experimental part of this work is to develop effective chemical and thermal treatments to improve localized corrosion (pitting) behavior of titanium in aggressive halide solutions. Sodium hydroxide and hydrogen peroxide have been chosen for the treatments as they are strong oxidizers. Treatments in NaOH and H2O2 solutions have been carried out investigating several parameters: quantity and concentration of solution, temperature, agitation, duration of treatment. The thermal treatment parameters considered were temperature and the nature of the samples treated (as is, pretreated in NaOH and pretreated in H2O2). Of the variables explored for chemical treatment, temperature and duration were more thoroughly investigated as they yielded the more marked differences in terms of pitting corrosion resistance. SEM, optical microscopy and XRD analysis were carried out to characterize the surface of the samples treated. The composition of the oxide layers was identified based on the data found in the literature, crystalline phase were detected, thickness was determined by direct observation. The corrosion behavior of the samples was determined by electrochemical potentiodynamic tests in bromides anions solutions, and the results were compared to those of both untreated and anodized samples. Temperature and duration of treatment and application of subsequent thermal treatment significantly affected the pitting potential of the samples, allowing to determine the conditions for treatments to be effective. Having obtained data on the effect of the treatments on as is titanium, the same treatments were applied to recover scratches on samples previously anodized either with color anodization or with anodic spark deposition. Compatibility of treatments was studied to determine whether the reactants used for chemical treatment and the oxide formed during anodization could interact in deleterious ways. Recovery of pitting corrosion resistance was tested by the same electrochemical potentiodynamic tests carried out on non-anodized treated samples.File | Dimensione | Formato | |
---|---|---|---|
Chemical and Thermal Treatments to Improve Corrosion Resistance of Titanium - Nicolis.pdf
solo utenti autorizzati dal 05/12/2018
Descrizione: Testo della tesi
Dimensione
8.04 MB
Formato
Adobe PDF
|
8.04 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/138133