The use of reliable computational tools is strictly required to proper analyse and design civil engineering structures. Such problem represents a key aspect in the study of shell structures, widely adopted in civil, hydraulic, mechanical and aeronautical engineering. In particular, in civil engineering they are used for liquid-retaining structures, storage silos, containment structures, cooling towers and arch domes, among others. These systems are characterized by some peculiarities, as for example the small thickness compared to the minimum radius of curvature of the midsurface. Moreover, the resisting mechanism to transverse loading is mainly based on the membrane resistance conferred by curvature, which makes this kind of structures very efficient. Analytical solutions for these systems are generally complex and limited to simple problems, especially due to boundary conditions. In particular, one of the most used solution has been proposed in the past by Geckeler (in the following indicated as Geckeler approximation), based on the observation that in shell structures horizontal forces or bending moments uniformly applied along the boundaries lead to displacements and internal actions for which amplitude exponentially decay far from the boundaries themselves. However, when the complexity of the problem increases, the use of computational models is the only practical way. To this purpose, present work is devoted to the implementation of a structural code for the analysis of generic shell structures, based on the analogy of the beam on elastic foundation (BEF). The novelties are represented by the development of shape functions to proper represent displacements and internal actions of a structure supported by elastic foundations and the modelling of the ring beam. A BEF element with rigid joints and lumped plasticity is formulated. The effectiveness of the proposed methodology is shown through the solutions of several applications, including reinforced concrete tanks subjected to pressure and hydrostatic forces.

Una corretta analisi e progettazione di opere di ingegneria civile richiede l’utilizzo di strumenti di calcolo affidabili. Tale problematica assume un ruolo chiave nello studio di strutture a guscio, ampiamente utilizzate in applicazioni come serbatoi in pressione, serbatoi per lo stoccaggio di liquidi, silos e strutture a cupola. Tali strutture presentano peculiarità rilevanti quali il ridotto spessore rispetto al raggio di curvatura e una capacità di trasmissione del carico agente basata su un meccanismo prevalentemente membranale, tale da garantire un’elevata efficienza meccanica. Le soluzioni analitiche riportate in letteratura sono in genere complesse e limitate a geometrie semplici, soprattutto per quanto riguarda le condizioni al contorno. In particolare, ha trovato largo impiego un’espressione approssimata proposta da Geckeler (a cui ci si riferirà nel seguito come approssimazione di Geckeler) basata sull’osservazione che in gusci di rivoluzione sollecitati al bordo da forze radiali o momenti sforzi e deformazioni tendono a smorzarsi rapidamente allontanandosi dal bordo stesso. Tuttavia, all’aumentare della complessità del problema, l’utilizzo di modelli computazionali di comprovata affidabilità risulta l’unica soluzione percorribile. A tale scopo, il presente lavoro propone quindi l’implementazione di un codice di calcolo per l’analisi di strutture a guscio di geometria generica, basato sull’analogia della trave su suolo elastico. Le caratteristiche principali del lavoro di tesi riguardano lo sviluppo di opportune funzioni di forma in grado di rappresentare correttamente spostamenti e forze interne di una struttura che poggia su un letto di molle elastiche e la modellazione della trave ad anello. Viene in particolare formulato un elemento di trave su suolo elastico con nodi rigidi e elasticità concentrata. L’efficacia dell’approccio proposto viene mostrata mediante numerose applicazioni, tra cui serbatoi in pressione e per il contenimento dell’acqua.

BEF element with rigid joints and lumped elasticity for structural analysis of axisymmetric shells with ring beams

MONACHELLO ARAUJO, FRANCESCO;GARCIA NAVARRO, JUAN SEBASTIAN
2016/2017

Abstract

The use of reliable computational tools is strictly required to proper analyse and design civil engineering structures. Such problem represents a key aspect in the study of shell structures, widely adopted in civil, hydraulic, mechanical and aeronautical engineering. In particular, in civil engineering they are used for liquid-retaining structures, storage silos, containment structures, cooling towers and arch domes, among others. These systems are characterized by some peculiarities, as for example the small thickness compared to the minimum radius of curvature of the midsurface. Moreover, the resisting mechanism to transverse loading is mainly based on the membrane resistance conferred by curvature, which makes this kind of structures very efficient. Analytical solutions for these systems are generally complex and limited to simple problems, especially due to boundary conditions. In particular, one of the most used solution has been proposed in the past by Geckeler (in the following indicated as Geckeler approximation), based on the observation that in shell structures horizontal forces or bending moments uniformly applied along the boundaries lead to displacements and internal actions for which amplitude exponentially decay far from the boundaries themselves. However, when the complexity of the problem increases, the use of computational models is the only practical way. To this purpose, present work is devoted to the implementation of a structural code for the analysis of generic shell structures, based on the analogy of the beam on elastic foundation (BEF). The novelties are represented by the development of shape functions to proper represent displacements and internal actions of a structure supported by elastic foundations and the modelling of the ring beam. A BEF element with rigid joints and lumped plasticity is formulated. The effectiveness of the proposed methodology is shown through the solutions of several applications, including reinforced concrete tanks subjected to pressure and hydrostatic forces.
TITI, ANDREA
ING I - Scuola di Ingegneria Civile, Ambientale e Territoriale
21-dic-2017
2016/2017
Una corretta analisi e progettazione di opere di ingegneria civile richiede l’utilizzo di strumenti di calcolo affidabili. Tale problematica assume un ruolo chiave nello studio di strutture a guscio, ampiamente utilizzate in applicazioni come serbatoi in pressione, serbatoi per lo stoccaggio di liquidi, silos e strutture a cupola. Tali strutture presentano peculiarità rilevanti quali il ridotto spessore rispetto al raggio di curvatura e una capacità di trasmissione del carico agente basata su un meccanismo prevalentemente membranale, tale da garantire un’elevata efficienza meccanica. Le soluzioni analitiche riportate in letteratura sono in genere complesse e limitate a geometrie semplici, soprattutto per quanto riguarda le condizioni al contorno. In particolare, ha trovato largo impiego un’espressione approssimata proposta da Geckeler (a cui ci si riferirà nel seguito come approssimazione di Geckeler) basata sull’osservazione che in gusci di rivoluzione sollecitati al bordo da forze radiali o momenti sforzi e deformazioni tendono a smorzarsi rapidamente allontanandosi dal bordo stesso. Tuttavia, all’aumentare della complessità del problema, l’utilizzo di modelli computazionali di comprovata affidabilità risulta l’unica soluzione percorribile. A tale scopo, il presente lavoro propone quindi l’implementazione di un codice di calcolo per l’analisi di strutture a guscio di geometria generica, basato sull’analogia della trave su suolo elastico. Le caratteristiche principali del lavoro di tesi riguardano lo sviluppo di opportune funzioni di forma in grado di rappresentare correttamente spostamenti e forze interne di una struttura che poggia su un letto di molle elastiche e la modellazione della trave ad anello. Viene in particolare formulato un elemento di trave su suolo elastico con nodi rigidi e elasticità concentrata. L’efficacia dell’approccio proposto viene mostrata mediante numerose applicazioni, tra cui serbatoi in pressione e per il contenimento dell’acqua.
Tesi di laurea Magistrale
File allegati
File Dimensione Formato  
BEF Element With Rigid Joints.pdf

accessibile in internet per tutti

Descrizione: Thesis laurea Magistrale Civil Engineering
Dimensione 11.64 MB
Formato Adobe PDF
11.64 MB Adobe PDF Visualizza/Apri

I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10589/138162