During the years of the so called "space era", started in 1957 with the launch of Sputnik I, a rising number of objects have been left in the near Earth space region and are expected to remain there for many years. These bodies not only represent a pollution problem but they can also represent a huge risk for active satellites. An in-orbit collision may cause catastrophic effects for the future of the near Earth space exploitation. The problem has been clear since the first years of space activity and mitigation strategies have been developed by the international community in order to limit the density of objects; regulation on launch phase debris, on satellite disposal phase, and collisions avoidance plans have been introduced. A way to limit risks related to space junk is being able to forecast close conjunctions between active controllable satellite and debris; therefore, trajectory knowledge of the largest number of objects is required and Space Surveillance Network (SSN) by USSTRATCOM, Space Situational Awareness (SSA) by European Space Agency and the EU Space Surveillance and Tracking (SST) network work in that sense. Debris observation is a very challenging field because of the complexity of the procedure due to the unknown physical properties of the objects and their reduced size. Nowadays, radar or optical systems are used to conduct observations; both methods have benefits and disadvantages and have different optimal application. The aim of this work is to develop and test strategies for the observation of uncatalogued objects with an optical sensor and evaluate their performance. A database of passages has been built which propagates orbits of the objects included in the dedicated catalogue. Three different strategies have been developed and applied considering features of a real telescope. Performance and criticalitites of each method have been evaluated and a comparison among all the simulations results have been performed.
Durante gli anni dell'”Era Spaziale”, cominciata nel 1957 con il lancio dello Sputnik I, un numero crescente di oggetti è stato lasciato in orbita terrestre ed è previsto che vi rimanga per lungo tempo. I corpi orbitanti non solo rappresentano un problema ecologivo ma anche un grande rischio per i satelliti attivi. Una collisione nello spazio potrebbe avere conseguenze catastrofiche compromettendo lo sfruttamento dello spazio attorno ala Terra, a cause dell’elevatissimo numero di detriti. Il problema è emerso sin dai primi anni di attività spaziale e strategie di mitigazione sono state sviluppate dalla comunità internazionale per limitare la densità spaziale di oggetti; regolazioni riguardanti la fase di lancio, la fase di dismissione dei satelliti e strategie di prevenzione di collisioni sono state introdotte. Per limitare i rischi è necessario essere in grado di prevedere le situazioni di prossimità di tra un satellite e un detrito; quindi, la traiettoria del maggior numero di oggetti deve essere nota. Gli enti Space Surveillance Network (SSN) dell’USSTRATCOM e Space Situational Awareness (SSA) dell’ESA e Space Surveillance and Tracking (SST) dell’UE lavorano in questa direzione. L’osservazione dei detrtit spaziali è un’operazione molto complicata a causa delle difficoltà legate alla procedura, considerando che le caratteristiche fisiche dei target non sono note e la loro ridotta dimensione. Ad oggi, sistemi radar e sistemi ottici sono utilizzati per condurre le osservazioni; i due diversi metodi hanno benefici e svantaggi che li rendono adatti all’utilizzo in diverse applicazioni. L’obbiettivo di questa tesi è quello di sviluppare strategie di osservazioni per un sensore ottico e valutarne le performance. Partendo dagli oggetti catalogati, è stato costruito un database di paassaggi reali, utilizzato per testare le diverse strategie; i tre metodi sviluppati sono stati testati in accordo alle caratteristiche di un telescopio reale. Di queste strategie, le criticità sono state identificate e discusse e i risultati ottenuti sono stati comparati ed analizzati in modo critico.
Development of observation strategies for the automatic tracking of space debris with an optical sensor
TOMASONI, YURI
2016/2017
Abstract
During the years of the so called "space era", started in 1957 with the launch of Sputnik I, a rising number of objects have been left in the near Earth space region and are expected to remain there for many years. These bodies not only represent a pollution problem but they can also represent a huge risk for active satellites. An in-orbit collision may cause catastrophic effects for the future of the near Earth space exploitation. The problem has been clear since the first years of space activity and mitigation strategies have been developed by the international community in order to limit the density of objects; regulation on launch phase debris, on satellite disposal phase, and collisions avoidance plans have been introduced. A way to limit risks related to space junk is being able to forecast close conjunctions between active controllable satellite and debris; therefore, trajectory knowledge of the largest number of objects is required and Space Surveillance Network (SSN) by USSTRATCOM, Space Situational Awareness (SSA) by European Space Agency and the EU Space Surveillance and Tracking (SST) network work in that sense. Debris observation is a very challenging field because of the complexity of the procedure due to the unknown physical properties of the objects and their reduced size. Nowadays, radar or optical systems are used to conduct observations; both methods have benefits and disadvantages and have different optimal application. The aim of this work is to develop and test strategies for the observation of uncatalogued objects with an optical sensor and evaluate their performance. A database of passages has been built which propagates orbits of the objects included in the dedicated catalogue. Three different strategies have been developed and applied considering features of a real telescope. Performance and criticalitites of each method have been evaluated and a comparison among all the simulations results have been performed.File | Dimensione | Formato | |
---|---|---|---|
MSc_Tomasoni_Final.pdf
accessibile in internet per tutti
Descrizione: Testo della tesi
Dimensione
16.23 MB
Formato
Adobe PDF
|
16.23 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/138681