Objects that fly at low Reynolds number are known as UAVs, Unmanned Aerial Vehicles. They have several benefits: they are more compact, portable, capable of working in hazardous conditions and cost effective than larger aircrafts, which often require the control of pilots inside of cockpits. The low Reynolds number effects on the aerodynamic of small UAVs, in particular, require greater attention. In this work we have used different computational tools in order to predict aerodynamic coefficients of airfoils at low Reynolds number typical for UAVs (around 2.0 x 10^5). XFoil code by Mark Drela along with CFD ANSYS FLUENT were utilized. An experimental test was performed in the wind tunnel of the Aerospace Department, Aerodynamic Laboratory (CLASD) of Politecnico di Milano. It has been shown that the XFOIL code gives accurate prediction results. Also, it is not clear that CFD turbulence models, even with boundary layer transition detection capability, can compute better airfoil performance predictions data.
I velivoli che volano a bassi numeri di Reynolds sono noti come UAV, Unmanned Aerial Vehicles. Essi possiedono diversi benefici: occupano poco spazio, sono facilmente trasportabili e possono operare in condizioni estreme; il loro costo è minore di quello di aeromobili più grandi, che sono obbligati ad avere un pilota per essere portati in quota. In questo lavoro di tesi sono stati confrontati diversi strumenti per il calcolo di coefficienti di portanza e resistenza per profili a basso numero di Reynolds tipici per gli UAV (circa 2.0 x 105). Il software XFoil, scritto da Mark Drela, e il software commerciale di CFD ANSYS FLUENT sono stati utilizzati ampiamente. Inoltre, è stata condotta una indagine sperimentale presso la galleria del vento del laboratorio di Ingegneria Aerospaziale del Politecnico di Milano. In questo lavoro è stato mostrato come XFoil sia capace di predire in modo accurato coefficienti aerodinamici di profili a basso numero di Reynolds. Infatti, l'impiego di modelli di turbolenza in grado di percepire la transizione dello strato limite, non implica una stima accurata dei coefficienti citati sopra da parte di metodi CFD.
Aerodynamic computation for unmanned aircraft vehicles (UAV) using different CFD codes
CATTANEO, RICCARDO
2016/2017
Abstract
Objects that fly at low Reynolds number are known as UAVs, Unmanned Aerial Vehicles. They have several benefits: they are more compact, portable, capable of working in hazardous conditions and cost effective than larger aircrafts, which often require the control of pilots inside of cockpits. The low Reynolds number effects on the aerodynamic of small UAVs, in particular, require greater attention. In this work we have used different computational tools in order to predict aerodynamic coefficients of airfoils at low Reynolds number typical for UAVs (around 2.0 x 10^5). XFoil code by Mark Drela along with CFD ANSYS FLUENT were utilized. An experimental test was performed in the wind tunnel of the Aerospace Department, Aerodynamic Laboratory (CLASD) of Politecnico di Milano. It has been shown that the XFOIL code gives accurate prediction results. Also, it is not clear that CFD turbulence models, even with boundary layer transition detection capability, can compute better airfoil performance predictions data.File | Dimensione | Formato | |
---|---|---|---|
2017_12_Cattaneo.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
7.49 MB
Formato
Adobe PDF
|
7.49 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/138689