Composite materials, reinforced with continuous fibres, exhibit mechanical characteristics comparable with many metallic alloys, with the great advantage to have a higher strength-to-weight ratio. Actual composite fabrication techniques require the realisation of expensive moulds. Hence, they are emerging in high-performance fields in substitution to metallic structural materials. The present work is the starting point of a wider research project which has the purpose of overcoming the limitations of composite fabrication, proposing the application in this field of additive manufacturing technologies. Additive manufacturing technologies, popularly known as “3D printing”, are better-suited in the realisation of complex shapes at low cost because of their great flexibility. But, nowadays, when these technologies make use of polymeric materials, usually generate objects with mechanical properties so poor, they are mainly used as prototypes. The ultimate aim of this research project is to develop a system, consisting of two six-axes robots able to generate complex objects in a three-dimensional space, using thermoplastic polymers reinforced with continuous carbon fibre. One robot must be equipped with a system able to deposit a filament composed of continuous fibres and a thermoplastic matrix; meanwhile, the second robot should act as mobile building platform or as ‘dynamic mould’. The present work focuses on design, deposition and testing of the deposition system, leaving the study of the kinematics of the robots and the deposition strategies to future developments. Firstly, the main concepts of Additive Manufacturing and composite materials, inherent to this work, are introduced. Then, the state of the art of 3D printing of composites is presented, with short and continuous fibres. The deposition apparatus has been developed, including a filament feeding system, a heating system, a compression system and a filament cutting mechanism. The apparatus was mounted on a common 3D printer modified properly. Finally, a series of tests have been performed to evaluate the effective functioning of the system. Specimens for tensile test were realised. They confirmed the validity of the apparatus and showed values of the ultimate tensile tests up to 505 MPa and a mean elastic modulus of 54.5 GPa, in the direction aligned with the fibre axis. Said values are, as expected, comparable with the ones defining metallic alloys properties.
I materiali compositi, rinforzati con fibre continue, presentano caratteristiche meccaniche paragonabili a molte leghe metalliche, con il grande vantaggio di avere un rapporto “forza-peso” più elevato. Le attuali tecnologie di fabbricazione richiedono la realizzazione di costosi stampi o controstampi. Si stanno quindi affermando principalmente in limitati campi ad alte prestazioni in sostituzione dei metalli strutturali. Il presente lavoro è il punto di partenza di un progetto di ricerca più ampio che mira a superare le limitazioni dei metodi di fabbricazione dei materiali compositi proponendo l’applicazione in questo ambito delle tecnologie additive. Le tecnologie additive, più note come ‘’stampa 3D’’, hanno tra i loro punti di forza la grande flessibilità nella realizzazione di forme complesse a basso costo; Queste tecnologie, quando utilizzano materiali polimerici, spesso generano oggetti con scarse proprietà meccaniche e quindi sono per lo più utilizzati come prototipi. Il fine ultimo di questo progetto di ricerca è di sviluppare un sistema composto da due robot a sei assi in grado di generare un oggetto in uno spazio tridimensionale, utilizzando polimeri termoplastici rinforzati con fibre di carbonio continue. Un robot deve essere quindi dotato di un sistema in grado di depositare un filamento composto da fibre continue di carbonio e da una matrice termoplastica. Mentre il secondo robot può agire come piattaforma di stampa mobile o come ‘controstampo dinamico’. Nel presente lavoro è stato progettato, sviluppato e testato il sistema di deposizione, lasciando lo studio della cinematica dei robot e delle strategie di deposizione agli sviluppi futuri che ne seguiranno. Sono stati anzitutto introdotti i concetti principali delle tecnologie additive e dei materiali compositi inerenti al progetto. Successivamente è stato presentato lo stato dell’arte riguardante la stampa 3D di materiali compositi, sia a fibre corte che continue. E’ stato quindi sviluppato l’apparato di deposizione, predisponendo un sistema di alimentazione del materiale, un sistema di riscaldamento, un sistema di compattazione ed un meccanismo di taglio del filamento. L’apparato è stato quindi montato su una comune stampante 3D modificata opportunamente. Sono state condotte prove sperimentali per valutare l’effettivo funzionamento dell’apparato. Sono stati infine realizzati dei provini che, sottoposti a prova di trazione, hanno confermato la validità dell’apparato e hanno mostrato, nella direzione parallela all’asse delle fibre, valori di sforzo limite di tensione fino a 505 MPa e un modulo di elasticità medio di 54.5 GPa. Risultati che, come atteso, hanno valori paragonabili a quelli delle leghe metalliche.
Design and testing of a deposition apparatus for additive manufacturing with continuous carbon fibre reinforced thermoplastic polymers
DENTELLI, ANDREA
2016/2017
Abstract
Composite materials, reinforced with continuous fibres, exhibit mechanical characteristics comparable with many metallic alloys, with the great advantage to have a higher strength-to-weight ratio. Actual composite fabrication techniques require the realisation of expensive moulds. Hence, they are emerging in high-performance fields in substitution to metallic structural materials. The present work is the starting point of a wider research project which has the purpose of overcoming the limitations of composite fabrication, proposing the application in this field of additive manufacturing technologies. Additive manufacturing technologies, popularly known as “3D printing”, are better-suited in the realisation of complex shapes at low cost because of their great flexibility. But, nowadays, when these technologies make use of polymeric materials, usually generate objects with mechanical properties so poor, they are mainly used as prototypes. The ultimate aim of this research project is to develop a system, consisting of two six-axes robots able to generate complex objects in a three-dimensional space, using thermoplastic polymers reinforced with continuous carbon fibre. One robot must be equipped with a system able to deposit a filament composed of continuous fibres and a thermoplastic matrix; meanwhile, the second robot should act as mobile building platform or as ‘dynamic mould’. The present work focuses on design, deposition and testing of the deposition system, leaving the study of the kinematics of the robots and the deposition strategies to future developments. Firstly, the main concepts of Additive Manufacturing and composite materials, inherent to this work, are introduced. Then, the state of the art of 3D printing of composites is presented, with short and continuous fibres. The deposition apparatus has been developed, including a filament feeding system, a heating system, a compression system and a filament cutting mechanism. The apparatus was mounted on a common 3D printer modified properly. Finally, a series of tests have been performed to evaluate the effective functioning of the system. Specimens for tensile test were realised. They confirmed the validity of the apparatus and showed values of the ultimate tensile tests up to 505 MPa and a mean elastic modulus of 54.5 GPa, in the direction aligned with the fibre axis. Said values are, as expected, comparable with the ones defining metallic alloys properties.File | Dimensione | Formato | |
---|---|---|---|
2017_12_Dentelli.pdf
non accessibile
Descrizione: Testo della tesi revisionato
Dimensione
3.68 MB
Formato
Adobe PDF
|
3.68 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/138828