Super duplex stainless steels (SDSSs) consist of γ-austenite and α-ferrite phases and the resultant microstructure confers them a good combination of strength, ductility and a superior corrosion resistance. The growing trend of the super duplex stainless steels market is, however, confined by the occurrence of brittle detrimental phases precipitations and the uncontrolled change of the phase ratio balance during hot forming and joining processes. A good comprehension of their microstructural evolution consequently results clearly crucial. A better evaluation and understanding of microstructural evolution of Super Duplex Stainless Steels and its influence on mechanical and corrosion resistance properties has still to be reached, although these materials are commercially available since some years. In details, the mechanisms governing the α/γ phase ratio changes during thermal treatments and secondary austenite precipitation processes are still not widely described and have been characterized in this work. The phenomena ruling these microstructural changes have been identified and the occurrence of two extremely useful properties have been found to feature this steel grades: the additivity character of annealing thermal treatment and the transformation-induced plasticity given by γ2 precipitation. These results have been exploited to achieve improvements in SDSSs properties and to perform and tune different surface processes. The choice of these technologies highlights the influence of the microstructure on the resulting products. The technologies chosen for this research activity are controlled shot peening, which is a mechanical process acting mainly on austenitic phase, and hot-dip aluminizing, which is a thermo-chemical process involving primarily the ferritic phase. A further significant result is the identification of the mechanisms involved in the applied 8 surface treatments. A totally mechanical process, such as shot peening, results to rely on microstructure homogeneity and, mainly, on austenite grains. On the other hand, a pure thermo-chemical treatment, as hot-dip aluminizing, involves almost completely the ferrite matrix, primarily, through short-circuit diffusion paths, like grain boundaries. This enables the use of these results to tune and optimize other technologies, aiming the exploitation of the investigated interactions between the processes and microstructural features.
Gli acciai inossidabili super duplex sono composti dalle fasi cristalline γ-austenite e α-ferrite e la microstruttura risultante gli conferisce un’ottima combinazione tra resistenza meccanica, duttilità e un’eccellente resistenza a corrosione. Il mercato degli acciai inossidabili super duplex è in continua crescita, tuttavia, risulta limitato dalla precipitazione di fasi infragilenti e dalla variazione incontrollata del rapporto tra le fasi costituenti durante i processi di giunzione e di formatura a caldo. Una buona comprensione dell’evoluzione microstrutturale di questi acciai risulta chiaramente cruciale. Una sua migliore valutazione e la conseguente influenza sulle proprietà meccaniche e di resistenza a corrosione deve ancora essere ottenuta, nonostante queste leghe siano in commercio già da diversi anni. In dettaglio, i meccanismi che regolano i cambiamenti del rapporto tra le fasi α/γ durante i trattamenti termici e i processi di precipitazione dell’austenite secondaria non sono ad oggi completamente descritti e sono stati caratterizzati più ampiamente in questo lavoro. I fenomeni, che governano questi cambiamenti microstrutturali, sono stati descritti e sono state identificate due importanti proprietà di questa famiglia di acciai: l’additività dei trattamenti termici di ricottura e l’effetto TRIP derivante dalla precipitazione di austenite secondaria. Questi risultati sono stati risultati per raggiungere miglioramenti sostanziali delle proprietà degli acciai inossidabili super duplex e per mettere a punto diversi trattamenti superficiali. La scelta di queste tecnologie sottolinea l’influenza della microstruttura sui prodotti finali. Le tecnologie scelte sono la pallinatura controllata, che è un processo meccanico che agisce principalmente sull’austenite, e l’alluminizzazione, che è un processo termo-chimico che coinvolge maggiormente la fase ferritica. Un ulteriore importante risultato è l’identificazione dei meccanismi coinvolti nei trattamenti superficiali utilizzati. Un processo completamente meccanico, come la pallinatura, risulta dipendere dall’omogeneità della microstruttura e, principalmente, dei grani cristallini austenitici. D’altra parte, un trattamento puramente termo-chimico, come l’alluminizzazione, coinvolge quasi esclusivamente la matrice ferritica attraverso i corto-circuiti dei percorsi di diffusione, come i bordi grano. L’identificazione di questi meccanismi permette l’uso di questi risultati per ottimizzare anche differenti tecnologie, permettendo di sfruttare le interazioni tra i processi superficiali e la microstruttura.
Super duplex stainless steels microstructural characterization and its application in surface treatments optimization
CIUFFINI, ANDREA FRANCESCO
Abstract
Super duplex stainless steels (SDSSs) consist of γ-austenite and α-ferrite phases and the resultant microstructure confers them a good combination of strength, ductility and a superior corrosion resistance. The growing trend of the super duplex stainless steels market is, however, confined by the occurrence of brittle detrimental phases precipitations and the uncontrolled change of the phase ratio balance during hot forming and joining processes. A good comprehension of their microstructural evolution consequently results clearly crucial. A better evaluation and understanding of microstructural evolution of Super Duplex Stainless Steels and its influence on mechanical and corrosion resistance properties has still to be reached, although these materials are commercially available since some years. In details, the mechanisms governing the α/γ phase ratio changes during thermal treatments and secondary austenite precipitation processes are still not widely described and have been characterized in this work. The phenomena ruling these microstructural changes have been identified and the occurrence of two extremely useful properties have been found to feature this steel grades: the additivity character of annealing thermal treatment and the transformation-induced plasticity given by γ2 precipitation. These results have been exploited to achieve improvements in SDSSs properties and to perform and tune different surface processes. The choice of these technologies highlights the influence of the microstructure on the resulting products. The technologies chosen for this research activity are controlled shot peening, which is a mechanical process acting mainly on austenitic phase, and hot-dip aluminizing, which is a thermo-chemical process involving primarily the ferritic phase. A further significant result is the identification of the mechanisms involved in the applied 8 surface treatments. A totally mechanical process, such as shot peening, results to rely on microstructure homogeneity and, mainly, on austenite grains. On the other hand, a pure thermo-chemical treatment, as hot-dip aluminizing, involves almost completely the ferrite matrix, primarily, through short-circuit diffusion paths, like grain boundaries. This enables the use of these results to tune and optimize other technologies, aiming the exploitation of the investigated interactions between the processes and microstructural features.File | Dimensione | Formato | |
---|---|---|---|
Ciuffini - PhD Thesis.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
7.21 MB
Formato
Adobe PDF
|
7.21 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/138948