Recently, MOOCs and Flipped Classroom practices have attracted a good deal of attention for several reasons. Flipped Classroom allows to improve the student's engagement, while MOOCs provide a high quality education standard reaching a large number of students. Many issues about these two innovative pedagogical practices are still open. This work deals with some of these open problems which merge together mathematics education and mathematical modelling of social dynamics. More precisely, we study the students and teachers' attitudes towards MOOCs and Flipped Classroom: on one hand we identify some possible students' difficulties when deal with MOOC, providing three main students' profiles. On the other hand we study and design different scenarios of Flipped Classroom carried out by teachers and tutors who use instructional videos in their hybrid classroom. One of the main aspect that emerges is that Flipped Classroom facilitates group work activities in classroom because during such activities the students act, interact and communicate much more than in usual frontal lessons settings. In such a context, it is crucial to understand what are the variables which govern the student dynamics and even what is the role of the teacher during a small group activity. Thus, we designed and validate an educational model which allows to describe the students' dynamics. Such a model is based on two affective dimensions called 'I can' and 'You can’ which describe the self-confidence of students and the perceived competence of their mates respectively. Moreover, on the path of recent mathematical model of multi-agents dynamics and opinion dynamics, with the 'I can - You can' framework we propose a mathematical model for small group work activities which allows to trace the evolution of students' opinion, which is their answer to a mathematical task, and design an optimal strategy for the teacher who has a crucial role in group work activities. To this end we identify some common goals that teachers have towards their students and set a control problem of multi-agent systems, when the agents are students who are asked to solve a mathematical task working in small group. The leader of the group is represented by the teacher who is allowed to make mathematical intervention during the students' activity with the purpose of improving students' performance. Hence, the teacher opinion is the control variable of the dynamics which evolves to achieve some goals abstracted by an object function. However teachers' cognitive interventions, e.g. hints, are just one of the possible teachers' actions, indeed they may also act social interventions, such as silencing a student and prompting another to talk, a behaviour which is more effective than cognitive in certain circumstances. In order to implement such aspects, we consider a simpler problem which goes towards this direction introducing a mathematical model for the evolution of students' skill, that describes pairwise interactions and how students can improve their mathematical skill communicating and working in couple. In this setting the teachers is allowed to modify students interactions changing the couples. In this setting we design an optimal control problem to allow teachers to maximise the average skills of the class, and identify a class of optimal strategy. To sum up, this work focuses on some aspects of students' learning to provide teachers with tools which facilitate the carrying out of innovative practices both on-line (e.g. MOOCs) and in presence (e.g. Flipped Classroom), and aid the control of group work activities thank to the proposed educational and mathematical models.
I MOOCs e la Flipped Classroom hanno recentemente attratto molte attenzioni nelle comunità educative e pedagogiche per diverse ragioni. La Flipped Classroom permette di migliorare la partecipazione degli studenti, mentre i MOOCs forniscono dei corsi di ottimo livello raggiungendo un ampio numero di studenti. Molte problematiche relative a queste due innovative pratiche educative restano ancora aperte, e questo lavoro affronta alcuni dei problemi aperti unendo insieme la didattica della matematica e la modellistica matematica di dinamiche sociali. Più precisamente, si è studiato le attitudini degli studenti e degli insegnanti nei confronti dei MOOCs e della Flipped Classroom: da un lato è stato possibile identificare alcune difficolta degli studenti quando utilizzano un MOOC, fornendo tre possibili profili di studenti; dall’altro lato si è studiato e progettato differenti scenari di Flipped Classroom utilizzati dagli insegnanti e da tutor che usano video didattici nelle loro classi ibride. Uno dei principali aspetti che è emerso è che la Flipped Classroom facilita il lavoro di gruppoin aula perché durante tali attività gli studenti agiscono, interagiscono e comunicano molto di più rispetto all’usuale lezione frontale. In questo contesto diventa cruciale capire quali sono le variabili che governano la dinamica degli studenti e quale sia il ruolo dell’insegnante durante le attività di gruppo. Per questo motivo, si è costruito e validato un modello educativo che permette di descrivere la dinamica degli studenti. Tale modello si basa su due dimensioni affettive chiamate ‘I can’ and ‘You Can’, che descrivono rispettivamente la stima di se stessi e la competenza percepita dei loro compagni di attività. Inoltre, sulla scia di recenti modelli matematici che si occupano di dinamica multi-agente a di dinamica delle opinioni, con l’aiuto del quadro 'I can - You can', si è proposto un nuovo modello matematico per le attività di piccoli gruppi di studenti, che permette di tracciare l’evoluzione dell’opinione degli studenti, cioè le loro rispostee ad un problema matematico, e progettare una strategia ottimale per l’insegnante che riveste un ruolo cruciale durante l’attività di gruppo. A questo scopo si sono individuati alcuni obiettivi comuni che gli insegnanti hanno nei confronti dei loro studenti e si è impostato un problema di controllo su un sistema multi-agente, dove gli agenti sono gli studenti che risolovono un problema di matematica. Il leader del gruppo è rappresentato dall’insegnante che può intervenire da un punto di vista cognitivo-matematico per migliorare la performance dagli studenti. Quindi, l’opinione dell’insegnante è la variabile di controllo che evolve per raggiungere gli obbiettivi descritti dalla funzione oggetto. Tuttavia l’insegnante può effettuare anche interventi di tipo sociali, per esempio dare la parola ad uno studente, un’azione che risulta molto più efficace in alcune circostanze. Per implementare anche questo tipo di intervento, si è considerato un problema più semplice del precedente che va, introducendo un modello matematico per l’evoluzione delle competenze degli studenti, che possono interagire solo in coppia e che prevede che uno studente possa migliorare la sua competenza in matematica solo se interagisce con qualcuno di più bravo. In questo nuovo scenario, si è definito un problema di controllo che permette all’insegnante di formare le coppie per massimizzare il livello medio delle competenze della classe. Per concludere, questo lavoro si concentra su alcuni aspetti dell’apprendimento degli studenti per fornire agli insegnanti degli strumenti che facilitano l’implementazione di pratiche didattiche innovative sia on-line, come i MOOCs, si in presenza, per esempio la Flipped Classroom, e aiuta il la gestione dei lavori di gruppo grazie ai modelli didattici e matematici proposti.
MOOCs and active learning in mathematics: educational and mathematical modelling for classroom practices
Abstract
Recently, MOOCs and Flipped Classroom practices have attracted a good deal of attention for several reasons. Flipped Classroom allows to improve the student's engagement, while MOOCs provide a high quality education standard reaching a large number of students. Many issues about these two innovative pedagogical practices are still open. This work deals with some of these open problems which merge together mathematics education and mathematical modelling of social dynamics. More precisely, we study the students and teachers' attitudes towards MOOCs and Flipped Classroom: on one hand we identify some possible students' difficulties when deal with MOOC, providing three main students' profiles. On the other hand we study and design different scenarios of Flipped Classroom carried out by teachers and tutors who use instructional videos in their hybrid classroom. One of the main aspect that emerges is that Flipped Classroom facilitates group work activities in classroom because during such activities the students act, interact and communicate much more than in usual frontal lessons settings. In such a context, it is crucial to understand what are the variables which govern the student dynamics and even what is the role of the teacher during a small group activity. Thus, we designed and validate an educational model which allows to describe the students' dynamics. Such a model is based on two affective dimensions called 'I can' and 'You can’ which describe the self-confidence of students and the perceived competence of their mates respectively. Moreover, on the path of recent mathematical model of multi-agents dynamics and opinion dynamics, with the 'I can - You can' framework we propose a mathematical model for small group work activities which allows to trace the evolution of students' opinion, which is their answer to a mathematical task, and design an optimal strategy for the teacher who has a crucial role in group work activities. To this end we identify some common goals that teachers have towards their students and set a control problem of multi-agent systems, when the agents are students who are asked to solve a mathematical task working in small group. The leader of the group is represented by the teacher who is allowed to make mathematical intervention during the students' activity with the purpose of improving students' performance. Hence, the teacher opinion is the control variable of the dynamics which evolves to achieve some goals abstracted by an object function. However teachers' cognitive interventions, e.g. hints, are just one of the possible teachers' actions, indeed they may also act social interventions, such as silencing a student and prompting another to talk, a behaviour which is more effective than cognitive in certain circumstances. In order to implement such aspects, we consider a simpler problem which goes towards this direction introducing a mathematical model for the evolution of students' skill, that describes pairwise interactions and how students can improve their mathematical skill communicating and working in couple. In this setting the teachers is allowed to modify students interactions changing the couples. In this setting we design an optimal control problem to allow teachers to maximise the average skills of the class, and identify a class of optimal strategy. To sum up, this work focuses on some aspects of students' learning to provide teachers with tools which facilitate the carrying out of innovative practices both on-line (e.g. MOOCs) and in presence (e.g. Flipped Classroom), and aid the control of group work activities thank to the proposed educational and mathematical models.File | Dimensione | Formato | |
---|---|---|---|
BRUNETTO_thesis_vfinal.pdf
non accessibile
Descrizione: testo tesi
Dimensione
7.82 MB
Formato
Adobe PDF
|
7.82 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/138987