During this thesis work we have addressed to the development of miniaturized chips for High-order Harmonic Generation (HHG), a non-linear process useful to obtain attosecond pulses, in order to study ultrafast molecular dynamics. Thus, we implemented two different optofluidic devices capable of generating extreme ultraviolet (XUV) radiation from the interaction between a driving field and a gaseous medium in a hollow waveguide. We have fabricated these devices employing Femtosecond Laser Irradiation followed by Chemical Etching technique, that allows to obtain three-dimensional microchannels embedded in fused silica substrate. Exploiting this technique, it was possible to create miniaturized devices in order to overcome limitations provided by traditional gas-jets techniques for HHG. In particular, one device is dedicated to HHG in a gas-filled hollow waveguide, exploiting phase-matching condition that leads to an enhancement of harmonic signal and an extension of wavelength cut-off. A second device is introduced to achieve quasi phase-matching, in order to reduce absorption effects and plasma dispersion, by periodically modulating the hollow waveguide diameter, i.e. the driving field intensity, and employing multiple sources delivering gas in the hollow waveguide. Results are obtained with a 800 nm driving wavelength for different noble gases and shows the possibility to miniaturize HHG beamlines for the generation, the manipulation and the acquisition of the XUV radiation.
Durante questo lavoro di tesi ci siamo concentrati nello sviluppo di chip miniaturizzati per la generazione di armoniche di ordine elevato (High-order Harmonic Generation), un processo non lineare utile per ottenere impulsi ad attosecondi, per lo studio di dinamiche molecolari ultraveloci. Quindi abbiamo implementato due diversi dispositivi optofluidici, capaci di generare radiazioni ultraviolette estreme (XUV) facendo interagire un campo incidente con un mezzo gassoso all’interno di una guida d’onda cava. Abbiamo fabbricato questi dispositivi impegando la tecnica dell’irradiazione con impulsi a femtosecondi seguita da etching chimico (Femtosecond Laser Irradiation followed by Chemical Etching), la quale permette di ottenere microcanali in tre dimensioni all’interno di un substrato di vetro. Sfruttando questa tecnica, è stato possibile creare dispositivi miniaturizzati per poter superare i limiti derivanti dalle tradizionali tecniche impegate per l’HHG. In particolare, un dispositivo dedicato all’HHG in una guida d’onda cava riempita di gas, in cui viene sfruttata la condizione di phase matching per poter ottenere un aumento del segnale delle armoniche e un’estensione della lunghezza d’onda di cut-off. In seguito, un secondo dispositivo verrà considerato per ottenere quasi phase-matching, in modo tale da ridurre gli effetti di assorbimento e la dispersione di plasma, attraverso la modulazione del diametro della guida d’onda cava, quindi modulando l’intensità del campo incidente, e utilizzando sorgenti multiple di gas nella guida. I risultati sono ottenuti impegando un campo incidente con lunghezza d’onda pari a 800 nm per diversi tipi di gas nobili e mostrano la possibilità di miniaturizzare gli apparati sperimentali per la generazione, manipolazione e acquisizione di radiazioni XUV.
Microchip fabrication by femtosecond laser micromachining for high-order harmonic generation
BOCCI, GIACOMO
2017/2018
Abstract
During this thesis work we have addressed to the development of miniaturized chips for High-order Harmonic Generation (HHG), a non-linear process useful to obtain attosecond pulses, in order to study ultrafast molecular dynamics. Thus, we implemented two different optofluidic devices capable of generating extreme ultraviolet (XUV) radiation from the interaction between a driving field and a gaseous medium in a hollow waveguide. We have fabricated these devices employing Femtosecond Laser Irradiation followed by Chemical Etching technique, that allows to obtain three-dimensional microchannels embedded in fused silica substrate. Exploiting this technique, it was possible to create miniaturized devices in order to overcome limitations provided by traditional gas-jets techniques for HHG. In particular, one device is dedicated to HHG in a gas-filled hollow waveguide, exploiting phase-matching condition that leads to an enhancement of harmonic signal and an extension of wavelength cut-off. A second device is introduced to achieve quasi phase-matching, in order to reduce absorption effects and plasma dispersion, by periodically modulating the hollow waveguide diameter, i.e. the driving field intensity, and employing multiple sources delivering gas in the hollow waveguide. Results are obtained with a 800 nm driving wavelength for different noble gases and shows the possibility to miniaturize HHG beamlines for the generation, the manipulation and the acquisition of the XUV radiation.File | Dimensione | Formato | |
---|---|---|---|
Master Thesis.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Microchip fabrication by Femtosecond Laser Micromachining for High-order Harmonic Generation
Dimensione
73.96 MB
Formato
Adobe PDF
|
73.96 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/139090