The aim of this project is to implement the survival curves of a population of pancreatic tumor cells subjected to hadrontherapeutic treatment in combination with magnetic hyperthermia. This combined procedure involves the insertion into the in vitro cell samples of magnetite nanoparticles that, once the uptake is performed, can release heat through the external action of an alternating magnetic field. The increase in temperature would represent a radiosensitizing factor which, in addition to irradiation by hadronic particles (carbon ions), would enhance the action of such radiotherapy, bringing damage difficult to repair to the tumor area. The experiments included a preliminary phase of characterization of the BxPC3 cells line, the study of cytotoxicity as a function of different concentrations of nanoparticles and in the presence of hyperthermic treatment, so as to choose the most suitable protocol for the final experiment: irradiation with bundles of carbon ions on cell samples already sensitized by the presence of nanoparticles, and consequent heating by the hyperthermia system. The results allowed to obtain survival curves with the same decreasing exponential trend, but gradually increasing slope in relation to the addition of radiosensitizers: this shows that the combination of nanoparticles, hyperthermia and irradiation with such densely ionizing particles brings an improvement in efficiency of the hadrontherapy, even if in percentages not too high. In fact, at the same dose, there is an increase in mortality (and therefore a decrease in survival) of about ten percent, a good result that can be improved with further research. The next step will be to use the same protocol for photonic radiation, applicable to conventional radiotherapies.

Lo scopo di questo progetto è implementare le curve di sopravvivenza di una popolazione di cellule tumorali pancreatiche sottoposta a trattamento adroterapico in combinazione con l’ipertermia magnetica. Questa procedura combinata prevede l’inserimento nei campioni cellulari in vitro di nanoparticelle di magnetite che, una volta effettuato l’uptake, sono in grado di rilasciare calore tramite l’azione esterna di un campo magnetico alternato. L’innalzamento della temperatura rappresenterebbe un fattore radiosensibilizzante che, in aggiunta all’irraggiamento da parte di particelle adroniche (ioni carbonio), potenzierebbe l’azione di tale radioterapia, portando danni difficilmente riparabili alla zona tumorale. Gli esperimenti hanno previsto una fase preliminare di caratterizzazione della linea cellulare BxPC3, lo studio della citotossicità in funzione di diverse concentrazioni di nanoparticelle ed in presenza di trattamento ipertermico, di modo da poter scegliere il protocollo più idoneo per l’esperimento finale: irraggiamento con fasci di ioni carbonio su campioni cellulari già sensibilizzati dalla presenza di nanoparticelle, e conseguente riscaldamento tramite il sistema di ipertermia. I risultati hanno consentito di ottenere curve di sopravvivenza con stesso andamento esponenziale decrescente, ma pendenza via via crescente in relazione all’aggiunta di radiosensibilizzanti: ciò dimostra che la combinazione di nanoparticelle, ipertermia e irradiazione con particelle così densamente ionizzanti porta un miglioramento dell’efficienza del trattamento adroterapico, anche se in percentuali non troppo elevate. A parità di dose si ha infatti un incremento della mortalità (e quindi un decremento della sopravvivenza) di circa il dieci per cento, risultato buono e potenziabile con ulteriori ricerche. Infatti, il prossimo passo sarà utilizzare lo stesso protocollo per la radiazione fotonica, applicabile alle radioterapie convenzionali.

Combining magnetic hyperthermia with hadrontherapy : an in-vitro study on pancreatic tumor cells

MANSI, MARIA CLAUDIA
2017/2018

Abstract

The aim of this project is to implement the survival curves of a population of pancreatic tumor cells subjected to hadrontherapeutic treatment in combination with magnetic hyperthermia. This combined procedure involves the insertion into the in vitro cell samples of magnetite nanoparticles that, once the uptake is performed, can release heat through the external action of an alternating magnetic field. The increase in temperature would represent a radiosensitizing factor which, in addition to irradiation by hadronic particles (carbon ions), would enhance the action of such radiotherapy, bringing damage difficult to repair to the tumor area. The experiments included a preliminary phase of characterization of the BxPC3 cells line, the study of cytotoxicity as a function of different concentrations of nanoparticles and in the presence of hyperthermic treatment, so as to choose the most suitable protocol for the final experiment: irradiation with bundles of carbon ions on cell samples already sensitized by the presence of nanoparticles, and consequent heating by the hyperthermia system. The results allowed to obtain survival curves with the same decreasing exponential trend, but gradually increasing slope in relation to the addition of radiosensitizers: this shows that the combination of nanoparticles, hyperthermia and irradiation with such densely ionizing particles brings an improvement in efficiency of the hadrontherapy, even if in percentages not too high. In fact, at the same dose, there is an increase in mortality (and therefore a decrease in survival) of about ten percent, a good result that can be improved with further research. The next step will be to use the same protocol for photonic radiation, applicable to conventional radiotherapies.
BETTEGA, DANIELA
ING - Scuola di Ingegneria Industriale e dell'Informazione
19-apr-2018
2017/2018
Lo scopo di questo progetto è implementare le curve di sopravvivenza di una popolazione di cellule tumorali pancreatiche sottoposta a trattamento adroterapico in combinazione con l’ipertermia magnetica. Questa procedura combinata prevede l’inserimento nei campioni cellulari in vitro di nanoparticelle di magnetite che, una volta effettuato l’uptake, sono in grado di rilasciare calore tramite l’azione esterna di un campo magnetico alternato. L’innalzamento della temperatura rappresenterebbe un fattore radiosensibilizzante che, in aggiunta all’irraggiamento da parte di particelle adroniche (ioni carbonio), potenzierebbe l’azione di tale radioterapia, portando danni difficilmente riparabili alla zona tumorale. Gli esperimenti hanno previsto una fase preliminare di caratterizzazione della linea cellulare BxPC3, lo studio della citotossicità in funzione di diverse concentrazioni di nanoparticelle ed in presenza di trattamento ipertermico, di modo da poter scegliere il protocollo più idoneo per l’esperimento finale: irraggiamento con fasci di ioni carbonio su campioni cellulari già sensibilizzati dalla presenza di nanoparticelle, e conseguente riscaldamento tramite il sistema di ipertermia. I risultati hanno consentito di ottenere curve di sopravvivenza con stesso andamento esponenziale decrescente, ma pendenza via via crescente in relazione all’aggiunta di radiosensibilizzanti: ciò dimostra che la combinazione di nanoparticelle, ipertermia e irradiazione con particelle così densamente ionizzanti porta un miglioramento dell’efficienza del trattamento adroterapico, anche se in percentuali non troppo elevate. A parità di dose si ha infatti un incremento della mortalità (e quindi un decremento della sopravvivenza) di circa il dieci per cento, risultato buono e potenziabile con ulteriori ricerche. Infatti, il prossimo passo sarà utilizzare lo stesso protocollo per la radiazione fotonica, applicabile alle radioterapie convenzionali.
Tesi di laurea Magistrale
File allegati
File Dimensione Formato  
2018_04_Mansi.pdf

Open Access dal 05/04/2019

Descrizione: Testo della tesi
Dimensione 2.76 MB
Formato Adobe PDF
2.76 MB Adobe PDF Visualizza/Apri

I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10589/139113