The microgrid is a portion of electric grid, which can be autonomous thanks to its distributed generations, usually renewable ones, and its energy storage system, where the surplus of energy is stocked. If the supply of the microgrid are not enough there is a connection with the external grid which guarantees the supply. Recently, the possibility of using direct current (DC) instead of alternating current (AC) in this portion of the grid is being evaluated, to improve its efficiency, reliability and reduce its environmental impact. However, the DC can be considered a new technology in electric networks, in fact there are some criticalities compared to the well-known AC. The main problematics of direct current in microgrids are that its adoption in electric networks is not standardized and its different behaviour needs new protection devices and protection strategies, since the ones adopted in AC are not suitable for the same task in DC systems. All these criticalities are analysed, and possible solutions are proposed in this thesis. In particular in the first chapter the story of DC and AC and their technical differences are described in order to understand why this change is in progress. In chapter 2 suitable voltage levels to be used as a standard for DC microgrids are exposed first, then some architectures in which the microgrid can be organized and in which the microgrids can connect to each other are listed. In the second chapter the main components of the microgrid system are also described, i.e. the distributed generations, the possible energy storage systems, the dual active bridge converter, that is the most appropriate DC/DC converter for this kind of application, and the communication system, which will be a fundamental part to refine efficiency and reliability of future electric network. In the third chapter the fault analysis for line to line fault and line to ground fault (considering the different grounding schemes employable) are performed. For these analysis different factors have been considered, such as the presence of active components in the system and the role of the galvanic isolation at the interface with the external grid. In the fourth and last chapter the protection devices adopted in AC system are listed first, and the changes needed to apply them in DC, if possible. Then the promising solid state circuit breaker and its variants are described. In chapter 4 various fault detection techniques deployable in DC systems and how protection should work in case of direct or indirect contact are also reported.
La micro-rete è una porzione della rete elettrica che può essere autonoma grazie alla generazione diffusa, solitamente rinnovabile, e a sistemi di stoccaggio dell’energia, dove eventuali surplus di energia vengono immagazzinati. Se la generazione diffusa non è sufficiente, l’alimentazione della micro-rete è garantita da una connessione con la rete di distribuzione. Recentemente si sta valutando la possibilità d’impiegare la corrente continua al posto della corrente alternata in questa porzione di rete, ma non solo, per migliorare l’efficienza, l’affidabilità del sistema e per ridurre il suo impatto ambientale. Comunque, la corrente continua può essere considerata una nuova tecnologia nelle reti elettriche, di fatti sono presenti alcune criticità nella sua applicazione rispetto alla ben conosciuta corrente alternata. Le problematiche principali sono l’assenza di standard nei livelli di tensione e le differenti caratteristiche che i dispositivi di protezione e le strategie di protezione devono avere rispetto a quelle adottate nei sistemi che adottano la corrente alternata. Tutte queste problematiche sono analizzate, e possibili soluzioni proposte, in questa tesi. In particolare, nel primo capitolo la storia di corrente continua ed alternata e loro differenze tecniche sono descritte per capire il perché di questo cambiamento. Nel secondo capitolo sono esposti idonei livelli di tensione da utilizzare come standard per le micro-reti in corrente continua, successivamente sono elencate alcune architetture in cui è possibile organizzare la micro-rete e alcune su come connettere le micro-reti fra loro. In questo capitolo sono inoltre descritte le principali componenti che costituiscono il sistema della micro-rete, cioè i sistemi di generazione diffusa, i sistemi di stoccaggio dell’energia, il convertitore DAB e il sistema di comunicazione. Nel terzo capitolo è riportata l’analisi guasti in caso di cortocircuito e, considerando i vari impianti di messa a terra, di guasto a terra. L’analisi è stata eseguita tenendo in considerazione diversi fattori, come la presenza nel sistema di componenti attive e il ruolo dell’isolamento galvanico all’interfaccia di rete. Nel quarto ed ultimo capitolo sono elencati i dispositivi di protezione adottati in sistemi a corrente alternata e quali cambiamenti necessitano per poter essere applicati in sistemi a corrente continua. Dopodiché il promettente interruttore a stato solido e le sue varianti sono descritte. Infine, sono riportate le possibili tecniche di locazione dei guasti e come i dispositivi di protezione si devono comportare in caso di contatto diretto ed indiretto.
DC microgrid : distribution system, technologies, fault analysis and protection devices
OPRANDI, LUCA
2016/2017
Abstract
The microgrid is a portion of electric grid, which can be autonomous thanks to its distributed generations, usually renewable ones, and its energy storage system, where the surplus of energy is stocked. If the supply of the microgrid are not enough there is a connection with the external grid which guarantees the supply. Recently, the possibility of using direct current (DC) instead of alternating current (AC) in this portion of the grid is being evaluated, to improve its efficiency, reliability and reduce its environmental impact. However, the DC can be considered a new technology in electric networks, in fact there are some criticalities compared to the well-known AC. The main problematics of direct current in microgrids are that its adoption in electric networks is not standardized and its different behaviour needs new protection devices and protection strategies, since the ones adopted in AC are not suitable for the same task in DC systems. All these criticalities are analysed, and possible solutions are proposed in this thesis. In particular in the first chapter the story of DC and AC and their technical differences are described in order to understand why this change is in progress. In chapter 2 suitable voltage levels to be used as a standard for DC microgrids are exposed first, then some architectures in which the microgrid can be organized and in which the microgrids can connect to each other are listed. In the second chapter the main components of the microgrid system are also described, i.e. the distributed generations, the possible energy storage systems, the dual active bridge converter, that is the most appropriate DC/DC converter for this kind of application, and the communication system, which will be a fundamental part to refine efficiency and reliability of future electric network. In the third chapter the fault analysis for line to line fault and line to ground fault (considering the different grounding schemes employable) are performed. For these analysis different factors have been considered, such as the presence of active components in the system and the role of the galvanic isolation at the interface with the external grid. In the fourth and last chapter the protection devices adopted in AC system are listed first, and the changes needed to apply them in DC, if possible. Then the promising solid state circuit breaker and its variants are described. In chapter 4 various fault detection techniques deployable in DC systems and how protection should work in case of direct or indirect contact are also reported.File | Dimensione | Formato | |
---|---|---|---|
2018_04_Oprandi.pdf
solo utenti autorizzati dal 20/03/2021
Descrizione: Testo della tesi
Dimensione
6.43 MB
Formato
Adobe PDF
|
6.43 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/139114