Monoclonal antibodies (mAbs) have successfully been applied to treat various disorders and diseases, e.g. complex cancer in the metastatic stage, due to their high specificity. Consequently, the demand for more antibody-based drugs is high. However, the bottleneck of large-scale production is the downstream process, in which the target antibodies are separated from the cell impurities by chromatography. State-of-the-art chromatographic materials impose a trade-off between through-put and separation quality, as they only exhibit small pores (0.15 μm) that limit the mass transfer rate by diffusion. This mediocre performance makes the purification time-consuming and costly, often cumulating to 80 % of the overall production costs. Herein, protein A prototypes for antibody capturing were developed based on a macroporous polymeric material (pore size up to 10 μm), and their physical performance was compared to that of commercial products. The bioconjugation of protein A was achieved by either chemically modifying the chromatographic base material by "click chemistry" or by introducing an alkyne functionality in protein A. It was found that the type of bioconjugation has a significant impact on the final product properties. A comparision between the preferred prototype, functionalized by thiol-epoxide reaction, with commercial chromatography materials revealed a significantly improved mass transfer. Additionally, the novel material exhibited superior packing efficiency at high flow rates, low pressure drops (0.2 bar/cm at 1800 cm/h), physical and chemical stability, efficient regeneration, marginal unspecific binding, and above all, a flow-rate independent dynamic binding capacity (DBC). In fact, the DBC at 1800 cm/h achieved more than 90 % of the initial capacity at 90 cm/h. This excels commercial products by far as their binding capacity declines to below 50 % at flow rates of only 750 cm/h. The produced protein A resin has doubtlessly demonstrated its true potential as affinity material for enhanced capturing of mAbs at very high process rates, paving the way for more efficient manufacturing of life-saving bio-pharmaceutical medicines.
Il grande successo raggiunto dagli anticorpi monoclonali nella cura di molte malattie, inclusi i complessi casi di cancro metastatici, ha reso queste molecole ideali nel campo biomedicale. Di conseguenza, la domanda per farmaci basati sugli anticorpi è alta e costantemente in crescita. Tuttavia, la loro produzione è fortemente limitata dalle operazioni di purificazione e, in particolare, da quelle cromatografiche. I materiali cromatografici attuali impongono di trovare un compromesso tra la capacità e le prestazioni della separazione, essendo costituiti soltanto da piccoli pori (0.15 μm) che limitano lo scambio di materia alla diffusione. Pertanto, la purificazione diventa lunga e costosa, spesso arrivando a coprire fino al 80 % dei costi di produzione. In questa tesi sono stati sviluppati prototipi di colonne cromatografiche per affinità basate su un materiale polimerico macroporoso (pori fino a 10 μm) e le loro performance sono state confrontate con quelle di prodotti commerciali. Il materiale è stato funzionalizzato coniugando la proteina A in due modi, modificando chimicamente il materiale di base per click chemistry o introducendo un gruppo alchino nella struttura primaria della proteina. E’ risultato che il tipo di coniugazione ha un impatto elevato sulle proprietà del prodotto finale. Il confronto del prototipo migliore con resine commerciali ha rivelato un trasferimento di materia più veloce. Inoltre, con la nuova resina si è ottenuto un letto impaccato efficiente anche a portate elevate, con basse perdite di carico (0.2 bar/cm a 1800 cm/h), fisicamente e chimicamente stabile, rigenerabile, con un basso livello di adsorbimento non specifico e, più di tutto, con una capacità di legame (DBC) indipendente dalla velocità del flusso. Infatti, la DBC a 1800 cm/h corrispondeva a più del 90 % di quella a 90 cm/h. In questo, la resina supera di gran lunga le resine attuali per cui la DBC diminuisce del 50 % a velocità di flusso pari a 750 cm/h. Perciò, la resina prodotta ha indubbiamente dimostrato il suo potenziale come materiale per la separazione più veloce di anticorpi, aprendo la strada ad una produzione più efficiente di farmaci salvavita.
Functionalization of macroporous materials by click chemistry to attain high-throughput protein. A resins for ultrafast purification of monoclonal antibodies
PAGANINI, CAROLINA
2016/2017
Abstract
Monoclonal antibodies (mAbs) have successfully been applied to treat various disorders and diseases, e.g. complex cancer in the metastatic stage, due to their high specificity. Consequently, the demand for more antibody-based drugs is high. However, the bottleneck of large-scale production is the downstream process, in which the target antibodies are separated from the cell impurities by chromatography. State-of-the-art chromatographic materials impose a trade-off between through-put and separation quality, as they only exhibit small pores (0.15 μm) that limit the mass transfer rate by diffusion. This mediocre performance makes the purification time-consuming and costly, often cumulating to 80 % of the overall production costs. Herein, protein A prototypes for antibody capturing were developed based on a macroporous polymeric material (pore size up to 10 μm), and their physical performance was compared to that of commercial products. The bioconjugation of protein A was achieved by either chemically modifying the chromatographic base material by "click chemistry" or by introducing an alkyne functionality in protein A. It was found that the type of bioconjugation has a significant impact on the final product properties. A comparision between the preferred prototype, functionalized by thiol-epoxide reaction, with commercial chromatography materials revealed a significantly improved mass transfer. Additionally, the novel material exhibited superior packing efficiency at high flow rates, low pressure drops (0.2 bar/cm at 1800 cm/h), physical and chemical stability, efficient regeneration, marginal unspecific binding, and above all, a flow-rate independent dynamic binding capacity (DBC). In fact, the DBC at 1800 cm/h achieved more than 90 % of the initial capacity at 90 cm/h. This excels commercial products by far as their binding capacity declines to below 50 % at flow rates of only 750 cm/h. The produced protein A resin has doubtlessly demonstrated its true potential as affinity material for enhanced capturing of mAbs at very high process rates, paving the way for more efficient manufacturing of life-saving bio-pharmaceutical medicines.File | Dimensione | Formato | |
---|---|---|---|
2018_04_Paganini.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
41.78 MB
Formato
Adobe PDF
|
41.78 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/139580