“Easy-to-reach” oil is finished. However, the world demand of liquid fuels is constantly rising. For this reason, Oil&Gas companies are focusing their effort in the exploitation of deep and ultra-deep offshore fields. To justify the economical commitment only large and giant fields can be exploited. Long tie backs to existing facilities are crucial to exploit small fields, which production otherwise will result uneconomical. However, flow assurance issues, such as wax and hydrate deposition, becomes critical. In this context more cost-effective flow assurance technologies must be employed to enable the production from such fields. One of the most promising technology is Active Heating, which is by definition the injection of heat into a production system. In this work steady-state electrical heating simulators have been implemented in MATLAB® in order to compare the different technologies from a flow assurance point of view. The fluid dynamic validity of the models is verified with the aid of the commercial software OLGA®. The models are then applied to a case study to extract general considerations. A preliminary transient analysis has been also performed to compare the different technologies. From the results, is possible to understand that the employment of the active heating technologies is fundamental to avoid solid depositions during normal flowing conditions. Furthermore, the technologies allow to maintain the temperature during a shut-down and warm-up the fluids during a cold start-up. The installation of high-performance insulating material is necessary to reduce the power requirement of the different active heating technologies.
Il petrolio facilmente estraibile è finito, tuttavia la domanda mondiale di combustibili liquidi è in continuo aumento. Per questo motivo le compagnie petrolifere stanno concentrando i loro sforzi nell’esplorazione e sfruttamento di giacimenti in acque sempre più profonde, tuttavia solo grandi giacimenti possono essere sfruttati per via del tremendo impegno economico. Collegare giacimenti marginali con delle infrastrutture già esistenti è fondamentale per ridurre i costi e quindi per produrre da riserve che altrimenti non sarebbero economicamente sfruttabili. La gestione del flusso di idrocarburi, tuttavia, diventa critica per lunghe distanze, per via della deposizione di cere e di idrati che possono completamente ostruire la condotta. In pratica diversi metodi, come ad esempio l’iniezione di inibitori chimici, vengono usati per mantenere il flusso di idrocarburi. Le tecnologie tradizionali tuttavia sono estremamente costose e quindi non possono essere economicamente applicate su condotte lunghe. In questo scenario le tecnologie di riscaldamento attivo possono essere applicate per ridurre i costi e produrre da campi marginali. Lo scopo di questa tesi è di analizzare le varie tecnologie di riscaldamento elettrico dal punto di vista termo-fluido dinamico. Per confrontare le differenti soluzioni diversi modelli sono stati implementati in MATLAB®. I modelli sono stati validati con l’ausilio del simulatore commerciale OLGA. I modelli sono successivamente stati applicati in un caso studio in regime stazionario e per un’analisi preliminare in regime transitorio. Dai risultati ottenuti è possibile capire che l’impiego delle tecnologie di riscaldamento elettrico è fondamentale per evitare la deposizione di cere e idrati e che l’impiego in combinazione con materiali molto isolanti è cruciale per limitare la potenza necessaria per riscaldare la linea.
Analysis of electrical heating technologies from a flow assurance point of view
ZAMBETTI, GIOVAN BATTISTA
2016/2017
Abstract
“Easy-to-reach” oil is finished. However, the world demand of liquid fuels is constantly rising. For this reason, Oil&Gas companies are focusing their effort in the exploitation of deep and ultra-deep offshore fields. To justify the economical commitment only large and giant fields can be exploited. Long tie backs to existing facilities are crucial to exploit small fields, which production otherwise will result uneconomical. However, flow assurance issues, such as wax and hydrate deposition, becomes critical. In this context more cost-effective flow assurance technologies must be employed to enable the production from such fields. One of the most promising technology is Active Heating, which is by definition the injection of heat into a production system. In this work steady-state electrical heating simulators have been implemented in MATLAB® in order to compare the different technologies from a flow assurance point of view. The fluid dynamic validity of the models is verified with the aid of the commercial software OLGA®. The models are then applied to a case study to extract general considerations. A preliminary transient analysis has been also performed to compare the different technologies. From the results, is possible to understand that the employment of the active heating technologies is fundamental to avoid solid depositions during normal flowing conditions. Furthermore, the technologies allow to maintain the temperature during a shut-down and warm-up the fluids during a cold start-up. The installation of high-performance insulating material is necessary to reduce the power requirement of the different active heating technologies.File | Dimensione | Formato | |
---|---|---|---|
2018_4_Zambetti.pdf
accessibile in internet per tutti
Descrizione: Testo della tesi
Dimensione
2.64 MB
Formato
Adobe PDF
|
2.64 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/139616