Rapidly declining costs of renewable energy sources have led to a strong increase in installed capacity in recent years. At the same time, the cost of electrochemical energy storage technologies has been decreasing. This dissertation presents, an analysis, from both a technical and economic perspectives, of three electrochemical storage technologies characterized by different configurations: Li-ion batteries, two flow batteries based on Vanadium and Hydrogen-Bromide electrolytes, and a CH4 reversible solid oxide fuel cell system coupled with underground gas storage caverns. Capital cost and system operation models from literature have been employed, accounting for the full systems except for the power electronics. Three different scenarios, to evaluate the differences that could arise both from the choice of the operating site and of the renewable-power source, have been considered: solar power in California, and wind or solar power in Denmark. The common metric to ensure a direct comparison among the different systems, is the levelized cost of electrical energy (LCOE). To obtain this parameter, a model, with inputs of time-series demand and supply data of a realistic power island, has been built. The effects of raw materials price fluctuations and the financing factor, on the LCOE, have been considered. The simulations show that, the main parameters, that affect the LCOE, are the roundtrip efficiency of the system, the number of operating cycles, and the amount of storage hours needed. It has been observed that a higher the number of cycles leads to lower LCOE and higher impact of the efficiency. For seasonal storage, since the cost of the power subsystem is spread across a huge amount of storage hours, the energy subsystem has the greatest impact on the capital costs. Due to its very low energy subsystem cost, the CH4 system, which is not yet commercialized, shows the lowest LCOE in all scenarios, especially in the Denmark scenarios which require seasonal storage.
La quantità di energia prodotta da fonte rinnovabile è fortemente aumentata negli ultimi anni. Allo stesso tempo il costo dei sistemi di stoccaggio è diminuito. In questo lavoro, è stata presentata un'analisi, sotto un profilo sia tecnico che economico, di tre differenti sistemi di stoccaggio elettrochimico, caratterizzati da diverse configurazioni: Batterie agli ioni di litio, due batterie a flusso basate su Vanadio e Idrogeno-Bromuro come materiali che compongono l’elettrolita, e un sistema reversibile di celle a combustibile a ossido solido abbinato a caverne sotterranee per lo stoccaggio dei gas. L’apparecchiatura elettronica non è stata inclusa nell’analisi. Sono stati considerati tre diversi scenari per valutare le differenze che potrebbero derivare sia dalla scelta del sito operativo che della fonte di energia rinnovabile: l’energia solare in California, e l’energia eolica o solare in Danimarca. Il metro comune per garantire un confronto tra le diverse tecnologie, è il costo livellato dell’energia elettrica (LCOE). Per valutare questo parametro, è stato costruito un modello che, come input, si basa sull’ adozione di serie temporali di dati riguardanti la curva di domanda e di produzione di una generica power island. Gli effetti delle fluttuazioni dei prezzi delle materie prime e del fattore di finanziamento sono stati considerati. È stato dimostrato che, i principali parametri che influenzano i LCOE, sono l'efficienza del sistema, il numero di cicli operativi e la quantità di ore di stoccaggio necessarie. È stato osservato che un numero maggiore di cicli porta a un minore LCOE e un maggiore impatto dell'efficienza. Siccome, per lo stoccaggio stagionale, il costo del sotto-sistema di alimentazione è distribuito su una grande quantità di ore, il costo dell’energia presenta il maggiore impatto sulle spese. A causa del basso costo del sottosistema energetico, il sistema di celle a combustibile, nonostante non sia ancora stato commercializzato, comporta un minore LCOE in tutti gli scenari.
Techno-economic model of electrochemical energy storage systems for fully balancing intermittent solar and wind power
ZEGGIO, ANDREA
2016/2017
Abstract
Rapidly declining costs of renewable energy sources have led to a strong increase in installed capacity in recent years. At the same time, the cost of electrochemical energy storage technologies has been decreasing. This dissertation presents, an analysis, from both a technical and economic perspectives, of three electrochemical storage technologies characterized by different configurations: Li-ion batteries, two flow batteries based on Vanadium and Hydrogen-Bromide electrolytes, and a CH4 reversible solid oxide fuel cell system coupled with underground gas storage caverns. Capital cost and system operation models from literature have been employed, accounting for the full systems except for the power electronics. Three different scenarios, to evaluate the differences that could arise both from the choice of the operating site and of the renewable-power source, have been considered: solar power in California, and wind or solar power in Denmark. The common metric to ensure a direct comparison among the different systems, is the levelized cost of electrical energy (LCOE). To obtain this parameter, a model, with inputs of time-series demand and supply data of a realistic power island, has been built. The effects of raw materials price fluctuations and the financing factor, on the LCOE, have been considered. The simulations show that, the main parameters, that affect the LCOE, are the roundtrip efficiency of the system, the number of operating cycles, and the amount of storage hours needed. It has been observed that a higher the number of cycles leads to lower LCOE and higher impact of the efficiency. For seasonal storage, since the cost of the power subsystem is spread across a huge amount of storage hours, the energy subsystem has the greatest impact on the capital costs. Due to its very low energy subsystem cost, the CH4 system, which is not yet commercialized, shows the lowest LCOE in all scenarios, especially in the Denmark scenarios which require seasonal storage.File | Dimensione | Formato | |
---|---|---|---|
2018_04_Zeggio.pdf
accessibile in internet per tutti
Descrizione: Thesis text
Dimensione
3.23 MB
Formato
Adobe PDF
|
3.23 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/139639